User Interaction and Interface Design with UML

Jesús M. Almendros-Jiménez and Luis Iribarne

Dpto. de Lenguajes y Computación. Universidad de Almería

{jalmen,liribarne}@ual.es

Abstract

This chapter is devoted to show how to use and specialise UML diagrams for describing the user interfaces of a software system. In order to accomplish the description of user interfaces, the proposed technique considers three specialised UML diagrams called user-interaction, user-interface and GUI-class diagrams, which will be built following a model-driven development (MDD) perspective. These diagrams can be seen as the UML-based UI models of the system. In addition, this paper concerns with code-generation to implement the user interfaces of the system by using GUI-class diagrams and user-interaction diagrams. A case study of an Internet book shopping system is introduced in this chapter to proof and illustrate the proposed user interaction and interface design technique.

Key words: UML 2.0, Use Cases, Model-Driven Development, Visual Languages, Interactive Computing, Interaction Design.
INTRODUCTION
The emergence of the Unified Modelling Language (UML) (OMG, 2005) as an industry standard for modelling systems has encouraged the use of automated software tools that facilitate the development process from analysis through coding. The user interface (UI), as a significant part of most applications, should also be modelled using UML. UML diagrams could be used to model user interfaces, and automatic CASE tools could help to generate code for user interfaces from UML designs. In general terms, visual modelling allows the developers to visualize source code in a graphical form: graphical abstractions, such as flow charts to depict algorithmic control flows and structure charts or simple block diagrams with boxes representing functions and subprograms, and so on. UML provides system architects with a visual language for specifying, constructing and documenting the artefacts of software systems. In particular, user interfaces should be visually modelled in order to describe the behaviour of the window system in response to user interactions.

This chapter is firstly devoted to show how to use and specialise UML diagrams in order to describe the user interface and user interactions of a software system, following a particular model-driven development (MDD) perspective. Model-driven development involves creating models through a methodological process that begins with requirements and looks into a high-level architectural design. Model-driven development facilitates and improves the software analysis and design and code generation facilities from models prevent the loss of substantial information during the transition of a model to its implementation.

In our MDD perspective, we consider the following steps for user interface design and modelling:

(a) Firstly, we use a UML use case diagram for extracting the main user interfaces.

(b) Secondly, we describe each use case by means of a special kind of UML activity diagrams, called user-interaction diagrams, whose states represent data output actions and transitions represent data input events. This perspective allows the designer to model the user interaction (i.e. input-output interaction) in each main user interface.

(c) Thirdly, each input and output interaction of the user-interaction diagrams allows the designer to extract GUI components used in each user interface. Therefore, we can obtain a new and specialized version of the use case diagram representing the user interface design, and a class diagram for GUI components: user-interface and GUI-class diagrams, respectively.

(d) The user-interaction, user-interface and GUI-class diagrams can be seen as the UML-based user interface models of the system.

This chapter is also devoted to deal with code generation techniques. In our MDD perspective the UML-based user interface models can be used for generating executable code with the following advantages:

(a) Firstly, for rapid prototyping of the developed software: software modellers would find it useful to quickly generate user interfaces from high-level descriptions of the system.

(b) Secondly, for model validation and refinement: Prototyping can detect fails in design and refinement and validation of model by testing user interfaces and user requirements.

(c) Thirdly, for model-based code generation: generated code would fit with developed models.

(d) Finally, starting point for implementers: prototypes can be refined until final implementation.

BACKGROUND
In the literature there are some works dealing with the problem of user interfaces in UML.

Use Cases and UI Design
Some of these works (Nunes & Falcao, 2001) (Paterno, 2001) (Constantine & Lockwood, 2001) are focused on the utilization of UML use case diagrams as “starting point” of the user interface design, or even as a “high-level description” of the structure of the user interface. However, there are some considerations about the use case diagram style. Following the UML philosophy, a use case diagram could not be suitable for extracting the user interfaces. Use case diagrams may include some use cases referred to parts of the system not related to user interfaces, such as classes, human tasks, components of other systems interacting with us, and so on. Or even, decomposing use cases by means of include and extend relationships, one could specify specific parts of the system which are not related with the user interface. Therefore, in our opinion, a specialized version of the use case model could be required, or even some other UML diagrams could be used to complete the use case view.

Adapting UML to UI Design
Other works (Heumann, 2003) (Nunes, 2003) (Nunes & Falcao, 2001) (Campos & Nunes, 2005) (Conallen, 1999) (Liberman, 2004) propose the introduction of new UML elements in order to model user interfaces. In this case, it is well-known the need of new stereotypes or classifiers in UML in order to distinguish GUI components from other system components. In this case, tere is a common point of view: classes should be stereotyped with <<screen>>, <<applet>>, <<input form>>, to be distinguished from data classes.

In addition, there are some works (Anderson, 2000) (Liberman, 2001) (Elkoutbi & Keller, 2000) (Elkoutbi et al., 1999) interested in the description of the logic of GUI components, using activity and state diagrams for that. In this case, user interaction can be specified by means of states, where the system shows output data, and requests input data. It should be specified how the user can navigate through the user interface, opening, closing windows, picking up in links, and so on. The specified logic should describe the set of states (input, output, windows) in which the user can be found.

Code Generation and UML
With respect to code generation, unfortunately, the capabilities of code generator CASE Tools to transform design to an implementation are often restricted to produce class definitions consisting of attributes and operation signatures captured in class diagrams, but not methods to implement the procedural flow within the operations. Existing approaches in this last sense turn statecharts into executable code. Statecharts are used as object controllers for specifying when an object is willing to accept request. CASE tools supporting code generation from statecharts are Statemate (Ilogix, 2006), Omate (Harel & Gery, 1997), Rhapsody (Ilogix, 2006) and Fujaba (Schäfer, 2002).

MAIN THRUST OF THE CHAPTER
With regard to previous works on UML (Use Cases) and UI Design, our contribution can be summarized as follows.

· Firstly, we consider use cases as a starting point of the user interface design. Here we define a new kind of diagram, user-interface diagram: a specialized version of the use case diagram as a high-level description of the user interface.

· In addition, following the MDD perspective, we integrate this system view with a set of specialized activity diagrams for user interaction design (user-interaction diagrams). One of the benefits of this integration is that each use case in the specialized use case diagram is described by means of a specialized activity diagram, and therefore interfaces can be analyzed and built from these two models.

· In addition, a class diagram is generated from the specialized activity diagrams. GUI components can also be built from both modelling techniques.

With regard to previous works on code generation, the UI models can get prototypes of the user interface of our application. Through mapping between UML and Java, we are able to generate low-level Java code directly from the user interaction diagram. This code generation is adapted to the special case of user interfaces, which is user event-based and handles input and output data by means of special kinds of UI components.

ORGANIZATION OF THE CHAPTER
The next section describes our model-driven development technique for User Interfaces. The chapter continues with the technique for the code generation by using user-interface models. This chapter finishes with some conclusions and future work.

MODEL-DRIVEN DEVELOPMENT FOR USER INTERFACES
Use Case Diagrams
Use case diagrams are used as starting point for user-interface design. Use cases are also a way of specifying required usages of a system, and they are typically used for capturing the requirements of a system (that is, what a system is supposed to do). The key concepts associated with the use-case model are actors and use cases. The users and systems that may interact with the system are represented by actors. Actors always model entities that are outside the system. Use cases represent the set of tasks that the actors carry out. In addition, the “use cases” can be decomposed by means of include relationships, and they can also be related by means of generalization/specialization relationships that compare more general and particular tasks.

In order to design a prototype of the user interface, the use case diagram should include the system actors and the set of (main) tasks for each one in which he/she takes part. From a point of view of user interface modelling, the use case diagram can be seen as a high level description of the main windows of the system.

To illustrate the functionality of the MDD-based technique we will explain a simple Internet book shopping (IBS) model.

[image: image1.jpg]o ~C >

Customer

X

Manager

Purchase

/ Manage orders

Manage partial orders

o

Manage catalogue

0
A

Update orders Administrator

Update partial orders

Figure 1. A preliminary use case description of the IBS example
In the IBS example (Figure 1), there basically appear three actors: the customer, the ordering manager, and the administrator. A customer directly makes the purchases by the Internet, querying certain issues of the product in a catalogue of books before making the purchase. The manager deals with customer’s orders (total or partially). And finally, the system’s administrator can manage the catalogue of books by adding and eliminating books in the catalogue or modifying those already existing. The administrator can also update or cancel certain component characteristics of an order or those orders fulfilling certain searching criteria.

This information is described with a use case diagram containing the identified actors and main tasks of the system. In our case study (see Figure 1), the actors are the Customer, the Manager and the Administrator, and the main tasks are purchase, manage orders, manage partial orders, manage catalogue, update orders and update partial orders.

From this use case diagram one can identify the future windows of the system that will comply with the needs of the presentation logic (graphical user interfaces).

User interaction Diagrams
The second modelling technique in our framework is the activity diagram. However, we need to specialise the activity diagram for user interface design in the following sense.

Our activity diagrams include states and transitions. The states represent data output actions, that is, how the system responds to user interactions showing data (or requesting them). Then the user can introduce data, and the corresponding event is handled, and specified by means of transitions. Transitions can be conditioned, that is, the handled event is controlled by means of condition, which can be referred to data/business logic or a previous user interaction. In other words, it is possible more than one transition from a state, and to know which of them will run depends on data/business logic or the previous user choices. We call user-interaction diagrams to this kind of activity diagrams used for user interaction description.

Now, it is supposed that each use case in the use case diagram is described by means a user-interaction diagram. However, from a practical point of view, it is convenient to use more than one user-interaction diagram for describing a use case. This is so because the logic of a use case is usually too complex. For this reason, a user-interaction diagram can be deployed in several user-interaction diagrams, where a part of the main logic is separately described. For this reason, user interaction diagrams can include states that do not correspond to data output, rather than representing subdiagrams. Now, it is desirable in some cases to be able to combine the logic of the subdiagrams and the main logic. For this reason, we will use in the main diagram transition conditions that can be referred to the logic of the subdiagrams.

Activity diagrams describe input and output user interactions. Given that we have decided to implement our user interface by means of Java swing package, we will consider the JFrame class as a container class that opens new frame windows (if needed). In addition, graphical components can be classified as input (a text field, a button, etc) and output components (a label, list, etc). Input/output components are associated with terminal states and transitions by using the appropriate stereotype. For instance, the stereotypes JTextField, JList, JLabel are associated with states and the stereotype JButton with transitions. Since the graphical behaviour concerns with states and transitions, next we will describe them separately.

States can be stereotyped or not. Stereotyped states represent terminal states, which can be labelled by <<JTextField>>, <<JList>> and <<JLabel>> stereotypes. For instance, let us focus our attention in the Purchase use case. Figure 2 shows the whole user-interaction diagram modelled for the purchasing process. Initially, the behavioural description starts with an original user-interaction description (Figure 2, a). The behaviour shows how the customer begins the purchasing process of querying, adding or removing articles of the shopping cart. After a usual purchasing process, the shopping system requests the customer a card number and an address to carry out the shipment, whenever the shopping cart is not empty. This diagram shows the graphical and behavioural content of the applet window where the purchases can be carried out.

[image: image2.jpg]<<JButton>>
[selected article] / Add to cart Exit] .

N

[Accept]
Query catalogue - Confirm Proceed

[Cancel]

[Selected article]

<<JButton=>
Close

‘ <<JL|st>>

Selected
artlcles

<<JButton>>
[Selected article | / Remove article

[Cancel]

Confirm
remove article

<<JButton>>

[cart not empty] / Show cart Close] <<JButton>> (¢) The Shopping Cart user-interaction diagram

[cart not empty] / Proceed
Shopping cart

(a) The Purchase user-interaction diagram

<<JButton=>
Accept

<<JLabel>>
Confirm remove
article

<< JButton=>
Cancel

(d) The Confirm Remove Article user-interaction
diagram

<< JButton>>

Clear [Selected article]
<< JButton== ‘
Search

<<JTextField>> <<Jlist>> <<JButton>>
Searching criteria Results Exit

<<JButton>>
Accept

<< JLabel>>
Proceed

<< JButton=>
Clear

<< JButton==
<<JButton== Cancel

Exit

(e) The Confirm Proceed user-interaction diagram
(b) The Query Catalogue user-interaction diagram

Figure 2. The whole user-interaction diagram of the Purchase use case

The main user-interaction diagram (Figure 2, a) is composed of three states (i.e., “Query catalogue”, “Confirm Proceed” and “Shopping cart”). Two of them are terminal states (i.e., “Confirm Proceed” and “Query Catalogue”). A terminal state is described in a new diagram whose states correspond to graphical elements stereotyped (for instance <<JTextField>> or <<JList>>) and labelled by a text related to the graphical element. The name of a separate user-interaction diagrams should be the same as that of the state. A non-terminal state is also described in a separate user-interaction diagram containing one or more non-terminal states.
Transitions can be labelled by means of stereotypes, conditions or both. For instance, a button is connected with a transition by using a <<JButton>> stereotype, and the name of the label is the name of the button. For example, a Show cart transition stereotyped as <<JButton>> will correspond with a button component called “Show cart”.

Conditions can represent user choices or business/data logic. The first one is a condition of the user’s interaction with a graphical component (related to button or list states), and the second one is an internal checking condition (not related to the states, but to the internal process). For example, in our case study the selections from a list are modelled by conditions. Note in the Query Catalogue user-interaction diagram how the Results list is modelled by a <<JList>> state and a [Selected article] condition.
Figure 2 shows some transitions (i.e. [Close], [Exit] or [Proceed]) that correspond with conditions of the user choice type. The [Exit] output transition of the state Query Catalogue (Figure 2, a) means that the user has pressed a button called Exit, which has been defined in a separate Query Catalogue user-interaction diagram. Nevertheless, conditions like the [cart no empty] condition are business/data logic conditions, in which the human factor does not take part.

Furthermore, stereotyped transitions (buttons in our example) and conditions connect (non) terminal states with (non) terminal states. A condition would be an output of a non-terminal state if the user interacted with a button or a list component inside the respective non-terminal state. The usual way of “condition/event” transition can connect (no)terminal states with (non) terminal states. A condition/event transition between states means which condition should be present to trigger the event. In our case study, an event can only be a button. For instance, to remove an article from the shopping cart, it must previously be selected from the cart list (Figure 2, c).

User Interface Diagrams
Therefore, in our technique we have obtained a use case diagram together with a set of user-interaction diagrams, from which some correspond to use cases and others to states of use cases. However, it could be useful to have a new version of the use case diagram, to know what are the main user-interaction diagrams, that is, which are the user-interaction diagrams corresponding to use cases, and which are the secondary user-interaction diagrams, that is, which are states of use cases. For this reason, we will build a new version of the use case diagram, called user-interface diagram as follows. The user-interface diagram contains the same actors, and use cases of the use case diagram. In addition, we will add states (as use cases) of each use case corresponding to user interaction diagrams. In order to connect use cases, we will use the “include” or “generalization” use case relations.

User Interface Relationships

Include and generalization relationships have the following meaning in this user-interface diagram, similarly to the same relations in the use case diagram. If a use case contains in its user interaction diagram a state described by means of another user interaction diagram, the state is also considered as a use case, and the included state (use case) is related in the user interface diagram by the inclusion relationship with the main use case. However, this is achieved whenever the logic of the included use case is not modified by the main use case. The logic of an included use case is modified in the main use case whenever the user interaction diagram of the main use case includes transitions that are referred to internal states or conditions of the included use case. This typically happens when the main use case defines its own logic using the included use case as a piece of behaviour, but access to the included use case. Otherwise, that is, whenever the logic of the included use case is modified, we relate the main use case and the state (use case) by means of the generalization relationship.

In addition, we have to identify a special case of generalization relationship, in which we have a main use case including a state and the state itself is a specialization version of another use case. This happens when the user interaction diagram of the state specialises the user interaction diagram of another use case. The specialization consists of the replacement of states and transitions of the user interaction diagram by means of more particular states and transitions with similar semantics. Here we are interested in the identification of similarity between interactions following the same pattern; however, the difference in our case consists of several kinds of GUI components and input/output data.

In other words, the specialization of use cases allows us to build new use cases with a more complex logic containing the specialized use case, and adding transitions and states or modifying the existent ones. On the contrary, the inclusion allows us to build new use cases with a more complex logic without adding or modifying the states and transitions of the included use case.

Given that the user interface diagram is a kind of high-level description of the user interface, the developer still could decide not to include in it all the states representing user interaction diagrams. In other words, the user interface diagram represents the set of windows of the system by means of use cases. However, there could be more user interaction diagrams than windows. Usually, some user interaction diagrams can be built for deploying some states but they will not correspond to system windows.

Once user-interaction diagrams have been described, the designer proceeds to build the user interface diagram. It contains new use cases that are some of the non-terminal states of the user interaction diagrams. In addition, the developer has to identify use case relationships in the new user interface diagram as follows.

Include relationships

Let us consider the purchasing process described in previous user-interaction diagrams.

[image: image3.jpg]o

Canfirm remave article

0

Canfim Proceed <sinclude>>

T OES

selnidezs Shopping cart

?Q\,_O Query caaiogue

Purchase

Customer

Figure 3. A user-interface diagram for the purchasing process

Purchase use case is a frame that includes (uses) three other frames (use cases): Query catalogue, Shopping cart and Confirm Proceed. These use cases are described by means of separate user interaction diagrams. In addition, the logic of the use cases is not modified in the Purchase user interaction diagram. It integrates the logic Query catalogue diagram by checking which buttons (i.e. Exit) the user pressed when (s)he exits from Shopping cart.
[image: image4.png]A/memmm
<<includes=

Query catalogue by administrator

CD/Aumwsuamy

Manage catalogue

Modify article. <<mc\u,¢e’>>

-

Administrator identfication

Figure 4. A piece of the user interface diagram of the Administrator side

The developer can also identify an inclusion relationship between Manage catalogue and Withdraw article, Modify article and Add article use cases (Figure 4). In these cases, four windows can be optionally opened (depending on a menu) from the Manage catalogue window. In addition, the Administrator identification window is mandatory opened from the Manage catalogue window in order to achieve the system’s administrator tasks.

Generalization relationships

In order to illustrate the generalization/specialization relationship, we will pay attention to three use cases: Purchase, Query catalogue and Query catalogue by administrator. In previous sections we have identified two cases of generalization/specialization.

[image: image5.jpg]-

Confirm remove article

A
i Withdraw artcle
Confirm Proceed <include>>

O Administrator
=<include>>
OQ\O Wanage cateogue
< gy

A

<sincluge>>

T -
?Q\,_O Quer caaiogue

Purchase
Custamer

Figure 5. A piece of the user-interface diagram

The first case is the Query catalogue and Purchase case. In this case the Purchase user-interaction diagram contains a state (use case) that specialises Query Catalogue in the following sense. The Query Catalogue user interaction diagram describes how to query the catalogue of the IBS by introducing the searching criteria and showing the results. However, the Purchase user interaction diagram can interrupt the querying process by adding the searched items to the shopping cart. It is specified by adding the Add to cart button as transition from (and to) Query catalogue. Therefore we can identify a specialization relationship between Purchase and Query Catalogue. It is also supposed that there will be a window for Query catalogue from which Purchase inherits.

[image: image6.jpg]<<JButton>>
Clear

[Selected article |

<<JButton>>

<lTextheas) SPCN — L cButtons>
Searching criteria e
for Administrator for Administrator
<<JButton>>
Clear
<<JButton>>
Exit

Figure 6. The user-interaction diagram for the query catalogue by administrator

The second case is the relationship between Query catalogue and Query catalogue by administrator. In this case, the administrator is supposed to have higher privileges for querying the catalogue and therefore the user interaction diagram of the Query catalogue by administrator (see Figures 5 and 6) specialises the Query catalogue user interaction diagram in the following sense. The states of the Query catalogue by administrator corresponding with the searching criteria and results are modified with respect to the Query catalogue. It is supposed that the searching and result fields are different but the logic is similar. In other words, the Query catalogue can be replaced by Query catalogue by administrator given that the states can be replaced. In this case we can identify a generalization relationship between them. Analogously, Withdraw article and Modify article combine both kinds of specialisation, once they’ve specialized the Query catalogue by administrator in the same sense that Purchase specializes Query catalogue, and they specialize indirectly Query catalogue (see Figure 6).

The complete user interface diagram of our case study can be seen in Figure 7.
[image: image7.jpg]Corfimtemove aticls Confin wicraw arls C Dessuse

3
Withdraw artcle
: <<include =

Canfirm Praceed “sinclude>>

| a talogue by administrat 3

\ m o
<ftugers

<<inclu

et <
,_O Quen caaiogue
Noify existence.

O O Confirm add artile 4
Notity invoice exists
Gonfirm nvoice S

b scinciydes> Zotiy no invoice exist
<cincluges’,

; O <<inciuse >
e 0rs s
Confim cancelfem

% / =<include=» O Cancel partial orders.

Ve = L7 .
R Nty ncarrect dentitcation ~AEIUdeSancel orders by crterion
search

Confimn cancel order

<o P
 ceinliters -

- Upst paril orsers

et et coutcaton ()

Notify invoice exists Administraioridentfication

L Addaricle
se<includes>

Custamer

<sinelides> Noifyincorrect identication

Agminstrator

<sinclude>x-<"

Manage partial orders:

Figure 7. The Internet Shopping user-interface diagram

GUI Class Diagram
The next step of our model-driven technique consists of the building of a class diagram for GUI components. The user-interface diagrams obtained in the previous state give us the main windows. Each use case connected to an actor can be converted into a window, and if an actor is connected to more than one use case, it can be considered a window by the actor that invokes (or embeds) each window of each use case.
Therefore, the actor window can be a menu window. In addition, in the user-interaction diagrams obtained from use cases, we have also described input and output components for data output and request and user events. It gives us the GUI components for each window. If a user-interaction diagram has a state described by means of another user-interaction diagram, we can suppose that the window of the use case could also contain a separate window for this separate task. However, now, we have to take into account the user-interface diagram and the use case relationships. In the case of inclusion, the logic is also separate, and it is possible to consider a new window. However, in the case of generalization/specialization, the window corresponds with a specialization, and therefore it is better to consider a new window by using the inheritance relation.

The windows obtained from use cases, and the GUI components obtained from each user-interaction diagrams allow us to build a class diagram, which we call GUI-class diagram, where there are windows classes connected by associations or by inheritance. In addition, there are GUI component classes, connected by associations to window classes.

Once the user-interface diagram has been built and a set of user-interaction diagrams has been obtained, now we can generate a GUI-class diagram.

The GUI-class diagram is built from Java swing classes. In the method, each use case corresponds with a frame class. Use cases are translated into classes with the same name as these use cases. The translated classes specialise a Java Frame class. The components of the frame (use case) are described in user-interaction diagrams. A terminal state is translated into that Java swing class represented by the stereotype of the state. The Java swing class is connected from the container class. For example, those terminal states stereotyped as <<JTextField>> are translated into a JTextField class in the GUI-class diagram. Something similar happens with the rest of stereotyped states and transitions. Figures 8 to 12 show the main classes of GUI-class diagram of the customer’s side.

As it can be seen in these figures, the stereotyped states and transitions in the user-interaction diagrams are translated into Java classes in the GUI-class diagram. The stereotype name of a transition or state is translated into the appropriate Java swing class. For example, the <<JButton>> stereotype of the Proceed transition that appears in the Purchase user-interaction diagram (see Figure 2, a) is translated into a JButton class.

[image: image8.png]QueryCatalogue

Purchase

purchaseappiet |[test |

& add_to_cart_Button : JBution
& proceed_Bution : JButton

& show_cart_Button : JButton
1% confimproceed_GUI : ConfirmProceed
T shoppingeart_GUI: ShoppingCart

ConfirmProceed][ShoppingCart

S Purchase) : void

4 accept_Button_ConfimProceed_GUID void

4 add_to_cart_Button_Purchase_GUI0 :void

4 cancel_Button_ConfimProceed_GUID *void

4 close_Button_ShoppingCart_GUIO : void

4 proceed_Bution_Purchase_GUIO :void

4 selected_artcles_List_QuenCatalogue_GUIO :void
4 show_cart_Bution_Purchase_GUIO :void

A jbinit) : void

ApstractButton | JFrame |[

ListSelectionEvent

Figure 8. Purchase class obtained from user-interface diagrams and user-interaction diagrams

[image: image9.png]QueryCatalogue

& clear_Bution: JButon
& exit_Button - JBution
& resuls_Label - JLabel
& results_List: JList [Dimension |
& resulis_SerollPane : JScrollPane

& search_Bufton - JBution

& searching _ciitria_Label - JLabel

& searching _ciiteia_TextFeld :JTexField
T Results: Vector
 QuenyCatalogus0 :void

¥ clear_Button_QueryCatalogue_GUIO : void
+ data_logicO void

¥ exit_Button_QueryCatalogue_GUI) :void
¥ results_List_QueryCatalogue_GUI : void

4% search_Button_QueryCatalogue_GUIO : void [Exception |[Object | String |[System |[Throwable
4 joinit) :void

Fostaciiion

ListSelectionEvent

JTextComponent

[ecionge][winow]

Figure 9. Query Catalogue class obtained from user-interface diagrams and user-interaction diagrams

[image: image10.png]‘ShoppingCart

¢ close_Button : JButton
[Puchase | temors_ e uton: Juton
¢ selected_articles_Label : JLabel
& coestenattes_ Lt Jist [oimension]
¢ selected_articles_ScrollPane : JScrollPane
¢ shopping_cart_Label : JLabel
g ——
T valuecar Vertor

‘ActionEvent

 ShoppingCan(:void

% accent_Button_ConfimRemaveArticle_GUIQ : void
¥ cancel_Button_ConfimmRemaveArticle_GUIQ : void
¥ close_Buttan_ShoppingCar_6UI0 :void
4> IsEmpty) < hoolean

% ermov il Buton ShogpngCar GUI vl == st
¥ selested_articles_List_ShoppingCart_6UI0 void
A setCarg :void

& joinit) :void

Fostaciiion

ListSelectionEvent

Figure 10. Shopping Cart class obtained from user-interface diagrams and user-interaction diagrams

[image: image11.png]& accept_Button : JButon
& cancel_Button : JButon

e [inensin Fectango

S confirmProceed(: void
ZET] # asieptButon_ConfimProceed_GUI - void
Canuel Buton_GonfimProceea_GUI0 vois
& i) vois

‘ActionEvent

Figure 11. Confirm Proceed class obtained from user-interface diagrams and user-interaction diagrams

[image: image12.png]ConfirmRemoveArticle

‘ShoppingCart

& accept_Button : JButon
& cancel_Button : JButton

e R) [inensin Fectango

S ConfirmRemaveAtticleq : void

ZET] # asieptButon_ConfimRermoveAticls_0UI0-vid
canuel Buton_GConfimRermoveAticls_oUI0-via
& i) vois

‘ActionEvent

[Excoption] Omect]St] Trowabie]

Figure 12. Confirm Remove Article class obtained from user-interface diagrams and user-interaction diagrams

GUI Prototypes
Finally, rapid GUI prototypes could be obtained from the GUI-class diagram. Figure 13 shows a first visual result of the Purchase window. Note how the Purchase window is very similar to the Query Catalogue window, except that the second one includes three buttons more than the first window. This similarity between windows was revealed in the user interface diagram as a generalization relationship between use cases: between the Query catalogue and Purchase use cases. In the IBS design, the customer will always work on a Purchase window opened from the Customer window, and never on a Query Catalogue window, though the former inherits the behaviour of the latter (i.e., by the relation of generalization). Let us remark that Purchase inherits from Query catalogue, and that the five windows (GUI) are the five use case of the Client side (see Figure 3).
The Shopping Cart window (Figure 13, c) appears when the Show Cart button is pressed on the Purchase window (Figure 13, b). Note in the user interface diagram, shown in Figure 7, how the button is associated with the window by means of an inclusion relation between use cases. On the other hand, the two information windows (Figure 13, d) are also associated with two buttons: the Remove article button in the Shopping Cart window and the Proceed button in the Purchase window. Note again how these windows are also described as inclusion relations between use cases.
[image: image13.jpg]=]

Searching Citeria Searching Criteria

\ [
== =

Results Resits

Showeart ||

(a) Query Catalogue applet (use case) (b) Purchase applet (use case)

EEX

Shopping Cart
Selected articles

(c) Shopping Cart applet (use case) (d) Information applets (use case)

Figure 13. The applet windows of the Customer’s side

Moreover observe the user-interaction diagrams shown in Figure 2 to track better the behaviour of the example. To develop the example, we have used the Rational Rose for Java tool. For space reasons, we have included here a part of the GUI project developed for the case study. A complete version of the project is available at http://indalog.ual.es/mdd/purchase.
CODE GENERATION FOR USER INTERFACES
Finally, our model driven technique allows us to obtain code generation from the developed models. The user-interaction diagrams describe each user interaction of each use case by means of states representing data output and transitions representing data input and events.
Code generation consists of coding an event-based user interface. We have decided to implement our user interface by means of the Java swing classes, and therefore we will use Applet and Frame classes for window components, and Button, Label, List, etc for other UI components. According to the Java swing package, events are handled by means of Listeners and Event Handlers in the corresponding window classes.

In order to explain the transition of the user interaction diagrams to code, we should first track a real interaction of the users with windows from the example: the Purchase behaviour from the client side.

Here we can see the complete sequence of user/windows interaction. The first window (Purchase, Slide 1) shows ten graphical components: two labels (Searching criteria and Results), one text field (textfield), one field with a list of results (Results) and six buttons. As we can see, the Search, Close and Exit buttons are enabled whereas buttons Add to Cart, Show Cart and Proceed are not active. The user can only choose one searching criteria in the corresponding field and then click Search. This interaction with the window after clicking the button makes the user access the logic data to obtain the results and then he/she gets to Slide 2 window.

In that window (Slide 2), we can observe that the searching button has been deactivated and the user can choose either one element from the list, or exit the application or clear the searching criteria, in which case the search button is again activated. Following the usual interaction sequence, when the user is in the Slide 2 window, he/she can choose one item from the list and then he/she will go to Slide 3.

Moreover, in Slide 3 one button to add the cart is activated. The user adds to the cart the selected element by pressing the button and then he/she gets to the Slide 4 window. In this state, there are some buttons that can show on the one hand the content of the cart (Show Cart) and on the other hand they can make the purchase (Proceed). The user can choose different elements from the list and add them to the cart. He/she can also enter new elements to the cart from a new searching, clearing the list (Clear) and entering a new “searching criteria” (Slide 5). In this state we can observe that the searching button is activated and the adding to cart button is deactivated. However, Show cart and Proceed buttons are not activated because the cart is not empty and the user at any time can see the cart or make the purchase. If the user wishes to see the content of the cart, he/she would get to the Slide 6 window (Shopping cart).

[image: image14.jpg]Searching Criteria

there lived not long since one of those gentlemen
that keep a lance in the lance-rack,

an old buckler,
alean hack, <
| Addtocart | | showcart || Proceed || Ext | it | showecart || proceed || Exit

Searching Criteria Searching Criteria
[[Don auixote [Don Quixate
[search | [clear | [search | [ciea soorch | [Clear
Results. Resuits. Results
In avillage of La Mancha, bec In a village of La Mancha, ki
the name of which | have no desire to call to mind, e name of which | have no desire to call to mind,
there lived not long since one of those gentlemen ere Iived not long since one of those gentlemen
that keep a lance in the lance-rack, at keep a lance in the lance-rack,
an old buckler, /an old buckler,
alean hack, a lean hack,)
‘Add to cart h Proceed Exit ‘Add to cart Show cart Pro Addto cart Show cart Proceed || Exit
Slide 1 Slide 2 Slide 3
Searching Criteria Searching Criteria
[Don Quirete [
Search Clear | search | | clear
Results Results Shopping Cart
/In avillage of La Mancha, b Selected articles
th ‘name of which | have no desire to call to mind,

the name of which | have no desire to call to mind,

| cose

!

Slide 4

‘Shopping Cart

Selected articles.

the name of which | have no desire to call to mind,

Remove article | | cuose

Slide 5

Confirm remove article ?

Accept Cancel

Slide 6

‘Shopping Cart

Selected articles

Remon

Slide 7

Slide 8

Figure 14. All complete sequence of the Purchase interaction

This new window (Slide 6) has got two labels, one list and two buttons; the first one is deactivated to avoid the removal of an element from a list until the user hasn’t selected one of them and the second one allows us to close the window.

If the user selects one element from the list (Slide 7) the button to eliminate it from the cart is activated. If so, he/she would get to the third level of the window for requesting the user’s confirmation to eliminate the element from the cart (Slide 8).

If the user confirms the elimination (in window Slide 8) he/she would get to the last level of the window shown in Slide 9; otherwise, he/she would get to the Slide 7 again.

General Structure of Frame Classes

The interaction behaviour previously described is defined by the designer through user-interaction and user-interfaces diagrams. The relationship of dependences between windows is described by means of user-interfaces diagrams (see again Figure 3).

The behaviour of the window when the user activates and deactivates buttons and changes the state of the graphical components is described by means of user-interaction diagrams (see again Figure 2). In order to obtain the behaviour shown in Figure 14, modelling it with user-interface and user-interaction diagrams (Figures 2 and 3), we create code prototypes in Java from these diagrams, making them correspond with specific lines of Java code. The most general structure of our method is the Frame classes for the windows of the system.

To explain how to make this relationship between diagrams and code, we are focussing on the Purchase user-interaction diagram. Figure 15 shows three perspectives of the Purchase:
a) the user-interface perspective, where the designer studies the dependences between windows through use cases;
b) the user-interaction perspective, where the designer models the behaviour of the graphic components of the windows and their interaction with the user; and
c) the GUI perspective, where the user works with a rapid prototype of the windows through a rapid generation of the code from both aforesaid perspectives (as previously seen).

In a symbolic way we have represented in the picture the GUI perspective (of the windows) with its equivalent in the user-interface perspective, including the type of relationship between windows (in order to clarify the dependences between them).

[image: image15.jpg]L2

Confirm remove article

Confirm Proceed

&

|
=<include==

Customer

Purchase

=<ificlude==

Bgy i

2

=kinclude==

o

Shopping cart
7

<<JButton>>
[cart not empty] / Show cart

Query catalogue

Confirm remove article

R

“ <<include>>
\

1

Shopping cart
ry
<<include>»

<<JButton>>

Close |

[selected article] / Add to cart

<<JButton>>
[cart not empty]/ Proceed

Purchase

Figure 15. A summary for the user-interface and user-interaction diagram of the Purchase function

In this example, these five use cases lead to five Java files of Frame type. Their names are obtained from the use case name (which will be the same as the one for the user-interaction diagram, one per use case). If compound nouns exist then a simple name is created with the initials of each word in capital letters (Table 1).

	User-interface &

user-interaction name
	File name

	Purchase
	Purchase.java

	Query catalogue
	QueryCatalogue.java

	Shopping cart
	ShoppingCart.java

	Confirm Proceed
	ConfirmProceed

	Confirm remove article
	ConfirmRemoveArticle.java

Table 1. Correspondence between diagram names and file names
Classes extend JFrame class and present a general structure of implementation based on frames (see Table 2). The basic structure of frame prototype created in the diagrams-to-code transition, is composed of four sections: one heading, one class constructor, one initiator of the frame (jbInit) and one basic prototype of the implementation of the detected methods (related with the logic of presentation). In the heading (labelled with /** @GUIcomponents */) the attributes are considered to be graphical components that have been detected in the corresponding user-interaction diagram. The class constructor is the same for all code files created (except for the name of the constructor). In the initiator of the frame (jbInit) it is included the code lines that model the graphical content of the window. The designer should establish the position and size of the graphical components of the frame later on, as the code generated is just a prototype of the window. In the fourth section of the Frame, it is created the basic methods related to the interaction of the user with the graphic elements that he/she can interact with: buttons, lists and text fields.

	User-Interface
Diagram
	Code generation

	
[image: image16]
Query catalogue
	import java.awt.*;

import javax.swing.*;
public class QueryCatalogue extends JFrame {

 /** @GUIcomponents */
 ...

 public QueryCatalogue() {

 try {

 jbInit();
 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

 private void jbInit() throws Exception {

 ...

 }

 // Methods implementation

 ...

}

Table 2. General structure of QueryCatalogue (frame)
GUI components

In order to analyze how translating the diagrams components to code inside the Frame, we’ll use again the Purchase example in Figure 15.
The behaviour of the Purchase window begins with the initial state Query catalogue (represented by the designer as an inheritance of behaviour in the user-interface diagram). As it can be observed, the Purchase window inherits all the graphical components (and behaviour) of the “Query catalogue” window and it also adds the Add to cart, Show cart and Proceed buttons, which are not activated. From the initial state Query catalogue, the four out coming transitions correspond to interactions with the buttons of the window and deal to new states. What the diagram shows from its initial state is the following: If there is an element selected from the list, then it is activated the button to add one element to cart.

 <<JButton>>
[selected article] / Add to cart

If the cart is not empty ([cart not empty]) it is activated the button to show the content of the cart and make the purchase of the products in the cart.
 <<JButton>>
[cart not empty] / Shopping cart

 <<JButton>>
[cart not empty] / Proceed

The transition [Exit], in the initial Query catalogue state, corresponds with the operation of clicking on the Exit button inside the behaviour diagram of the window (Frame): Query catalogue (window inherited by Purchase). The same happens with the other two transitions that reach this initial state from the state Confirm proceed (window to confirm the purchase).

For this example there are four modelled graphical components: labels, text fields, lists and buttons. In table 3, it is shown the correspondence between graphic components of the user-interaction diagram (stereotypes) and the code generation.

	UI diagrams
	Code generation

	Stereotype
	Atribute
	Class
	In/Out
	Listener
	S/T
	Markup

	<<JLabel>>

name
	name_Label
	JLabel
	Out
	No
	State
	/** @Label */

	<<JTextField>>

name
	name_Label

name_TextField
	JTextField
	In/Out
	No
	State
	/** @TextField */

	<<JList>>

name
	name_Label

name_List

name_ScrollPane
	JList
	In/Out
	Maybe
	State
	/** @List */

	<<JButton>

name
	name_Label

name_Button
	JButton
	In
	Yes
	Trans.
	/** @Button */

	[condition]
	None
	None
	In/Out
	No
	Trans.
	None

Table 3. Correspondence between user-interaction stereotypes and code generation
In Table 3, column “Stererotype” represents the stereotypes used in the states/transitions of the user-interactions diagram.
The columns “Attribute” and “Class” represent the name of the attribute and the base class instantiated in the code generated. The criterion followed to establish the name generated in the code is: name_Type. That is, as a name it is used the same name indicated in the interaction diagram in capital letters, followed by a hyphen (i.e. “_”) and then finished by base type (Label, Button, List, etc.). If the original name has got blanks in between, they are substituted by hyphens. For example, the label:
<<JLabel>>

Shopping cart
It is translated to the name of the attribute Shopping cart button and then it is generated the following Java code:

public JLabel shopping_cart_Button = new JLabel();

The “In/Out” column represents an exit from/to the user (or window). So, for example, one stereotype label will represent a text shown from the system towards the user (window) whereas the button (according to its graphic behaviour) represents an income action (interaction) from the user towards the system. The “textfields” and lists stereotypes represent both options: the system shows and modifies the content of these graphic components and at the same time, the user can either write (textfield) or choose (list) in these graphic components. The “Out” components have no correspondence with the code, whereas the “In” components have correspondence with one Listener class.

The “listener” column indicates whether a graphical component is moved by means of a Listener class. This type of class allows the class creating it for listen the behaviour of the graphic component with the user. It’s usual to use listener in buttons and lists (we’ll study these later).

The “S/T” column is referred to whether the graphic component corresponds with a state or a transition in the user-interaction diagram.

Finally, “Markup” column is referred to the mark prototype created before the translated code. This mark helps to identify the content of the text when the programmer has to rewrite or insert the new code to add and complete the functionality of the windows.

Mapping States into Code

As previously said, the states of a user-interaction diagram can be referred to terminal states (Label, Textfield, List) and non terminal states

Non terminal states

Let us begin with the user-interaction diagram Purchase (see Figure 15). The diagram is composed of three non terminal states. We should remember that a non terminal state is a state whose behaviour is defined separately from other diagram of interaction. For example, the Query catalogue, Confirm proceed and Shopping cart states will be defined in independent user-interaction diagrams having the same name as the corresponding state. In the user-interface diagram, the Query catalogue is established by the designer as an inheritance for Purchase, whereas the other two states (which are “use cases” and therefore windows) are established as conclusions in the user-interface diagram (i.e. <<include>>). The translation is as follows:

public class Purchase extends QueryCatalogue {

 /** @GUI */

 ShoppingCart shoppingcart_GUI = new ShoppingCart();

 /** @GUI */

 ConfirmProceed confirmproceed_GUI = new ConfirmProceed();

 ...

Note that Purchase class inherits QueryCatalogue in the code. The two “include” relationships are included in the code in the heading section (one of the four that Frame has got). On the code line a @GUI mark is inserted to trace an inclusion of the window in the process of translation. Moreover, the criterion for the name of the GUI variable is considering the original name of the included window followed by “_GUI”.

Terminal states

Terminal states (Label, List, TextField) are translated into code lines in the heading, initiation of Frame (jbInit) and implementation of methods sections (only in List). Appendix A contains the Java code patterns translated from the graphical components of the user-interaction diagram. Let’s see each of them separately.
For a Label case three basic code lines are generated: one in the heading to define the type (JLabel) and two in the initiation (jbInit) to establish the component. In Figure 16, it is shown a bit of code generated to the label state “Confirm remove article”. The code line 3 creates one variable of JLabel type. Note how the name of the variable is obtained from the name given to the <<JLabel>> state in the user-interaction diagram. The line 7 establishes the text that will appear in the window. Line 9 adds the label to the container. Lines 2, 6 and 9 are marks established previously that are inserted in the code to facilitate the identification of each part of the code.
[image: image17.jpg]<< JButton>>

Confirm remove article ? <<JLabel>> Accept
Confirm remove
Accept Cancel article <<JButton>>
Cancel

public class ConfirmRemoveArticle extends JFrame {
/** @GUIcomponents */
public JLabel confirm remove article Label = new JLabel();

private void jbInit () throws Exception {
/** @Label */
confirm remove article Label.setText ("Confirm remove article");
/** @Panel */
this.getContentPane () .add(confirm remove article Label, null);
0: } // end jbInit ()
1.

= O O JdJo b WK

Figure 16. The Confirm remove article-label state in Query Catalogue

In Table A.2 of Appendix A shows the Java code pattern that is translated from the <<JLabel>> graphical components of user-interaction diagram.

For the “text fields”, five basic code lines are generated. Two of them are generated in the heading to define two graphical components in the heading: one JTextField and one Jlabel to name it in the window. The other three code lines are generated in the initiation section of frame (jbInit). For example, Figure 17 shows how translating the terminal state Searching criteria (in the user-interaction diagram of frame Query catalogue) into a code in two components (lines 2 and 3). It is created a “text field” area (JtextField) and a text (Label) which accompanies the text field. For the naming of the variables we use the same criterion established before: the same text that appears in the state followed by “Label” or “Textfield”. In line 9 it is established the text in the window. Lines 11 and 12 add both graphical components to the container.

In Table A.3 of Appendix A it is shown the Java code pattern that is translated from the <<JtextField>> graphical components of the user-interaction diagram.
[image: image18.jpg]<<JButton>>

Clear [Selected article]
\ m <<JButton>> m
<<JTextField>> Search el] <<JButton>>
Searching Criteria Searching criteria J()[Dot J Exit >©
<<JButton>>"
Clear
[S [| 4 l <<JButton>>
Exit
l: public class QueryCatalogue extends JFrame ({
2: /** @GUIcomponents */
3 public JLabel searching criteria Label = new JLabel()
- public JTextField searching criteria TextField = new JTextField();
- ¥
6: private void JbInit () throws Exception {
7: /** @Label */
8 : name Label.setText ("Searching criteria");
9:
10: /** @Panel */
11: this.getContentPane () .add(searching criteria Label, null);
12 : this.getContentPane () .add(searching criteria TextField, null);
13: } // end jbInit()

|—\
W
W

Figure 17. The Searching criteria text field state in Query Catalogue

Finally, there are the terminal states of list type. Graphically these states are somehow special since ―like a textfield― they can be translated into different ways: a Label component, other List or even a ScrollPane. The latter can be used as a container to show the elements from the corresponding list. Several lines are generated in the translation, in three sections (heading, initiation and methods). For example, Figure 18 shows a translation of the Results state.
[image: image19.jpg]<<JButton>>

| Search || Clear | Clear [Selected article |
Results
\m <<JButton>> m
[<<JTextField>> Search ST]<<JButton>>
Searching criteria J(>[Results Exit>Q
<<JButton>>")
Clear
<<JButton>>
Exit
l: import javax.swing.event.*;
4
3: public class QueryCatalogue extends JFrame {
4: /** @GUIcomponents */
e 3 public JLabel results Label = new JLabel();
3 public JScrollPane results ScrollPane = new JScrollPane();
7 public JList results List = new JList();
8:
9: private void jbInit () throws Exception {
10: /** @Label */
11: results Label.setText ("Results");
12
1.3 /** @List */
14: results ScrollPane.getViewport () .add(results List, null);
15: results List.addListSelectionListener (
16: new jgvax.swing.event.ListSelectionListener() {
| N - public void valueChanged (ListSelectionEvent e) {
18: results List ShoppingCart GUI(); } 1})~
19:
20: /** @Panel */
21: this.getContentPane () .add(results Label, null);
22 this.getContentPane () .add(results ScrollPanel, null);
23: } // end jbInit ()
24:
25: // Methods
void results List ShoppingCart GUI() { ... }

(RO AV
~]

}

Figure 18. The Results list state in Query Catalogue

Lines 5, 6, and 7 are generated in the heading (after /** @GUIcomponents */) defining the name of the variables of the three graphical components. Again the criterion used for the naming of the variables is the same as that one used in previous examples. In the initiation section (jbInit) the following code is created. Firstly, the label text is established in the panel (line 11). Then, an event of listener type is used to catch the interactions of the user with the list when he/she presses the elements of the list. Therefore, in line 14 there is the container Scrollpane type where the list is and from lines 15 to 18 there is the listener event on the list. To do so, the library javax.swing.event.* is imported (line 1). Lines 21 and 22 add graphical elements to the panel. Finally, the method implementation section (line 26) includes the prototype of the method used each time the user presses on an element from the list. The implementation of the method is a later task of the programmer.

In table A.3 of Appendix A it is shown the Java code pattern translated from JList graphical components of user-interaction diagram.

Mapping Transitions into Code

Transitions correspond with buttons (<<JButton>>) or changes in the internal state of the data logic. They are represented in the diagram as a condition markup (p.e., [cart not empty] o [Close]). Table A.1 (Apendix A) shows the Java code pattern for a graphical component <<JButton>> translated from the user-interaction diagram.

Transitions represent graphical components that generate code at several sections of the program. The translation into code is the more important issue in the code generation process, since it reveals the usefully of the user-interaction diagrams for the traceability of the interaction of the user with the graphical components of the window and also how that (window) responds to the user. To explain the translation of states to code, we will use again the Purchase windows sample. In Figure 19 we show (at the right side) the two related user-interaction diagrams of the Purchase window (showed at left side).
[image: image20.jpg]<<JButton>>

[selected article] / Add to cart [Exit]
Searching Criteria m [Accept]
® Query catalogue Confirm Proceed
[Cancel] * 7
<<JButton>>
[cart not empty] / Show cart [[Close] <<JButton>>
[cart not empty] / Proceed
¥

[Shopping cart]

<<JButton>>
Clear [Selected article]
\ m <<JButton>> m
Add to cart Show cart Proceed <<JTextField>> — <<JList>>] <<JButton>>
Searching criteria J< Resuits J Exit >©
<<JButton>>"
Clear
<<JButton>>
Exit

Figure 19. The Purchase window
Remember that the system’s designer has described the Purchase window from the Query catalogue window, which represents a state in the user-interaction diagram of the Purchase window. This state inherits the inner behaviour of the Query catalogue (whose behavioural interaction is shown at the right-lower side in Figure 19). It arrives at two possible states through four transitions from the state Query catalogue: (a) see the state of the cart (Shopping cart state); or (b) carry out the purchase of the products stored in the cart (Confirm Proceed state). Both states are reached from the Purchase window through the buttons Show cart and Proceed. In the state, a conditioned transition has been included for reaching these two windows from Purchase: that the cart is no empty. In other words, a conditioned button-transition corresponds with an operation of activation/deactivation of buttons.

Since these three buttons are conditioned by a selection action in a list, a listener operation is generated on the list in the Purchase class. Remember that both the list and the most of the graphical components of the Purchase window are inherited from Query Catalogue window (i.e., public class Purchase extends QueryCatalogue), and therefore the operation listener is done on the superclass which contains the list.

/** @List */

super.results_List.addListSelectionListener(

 new javax.swing.event.ListSelectionListener() {

 public void valueChanged(ListSelectionEvent e) {

 selected_articles_List_QueryCatalogue_GUI(); } });
In this way, whenever the user presses on the list, an event is captured, which calls to the function selected_articles_List_QueryCatalogue_GUI(). The name of the method is established by the text included in the condition of the transition in the user-interaction diagram. For instance, a button-transition Add to cart containing a condition [selected articles] means that the class (frame) Purchase enables the button Add to cart in the window if and only if an element of the list has been selected; in other case, the button will remain disabled (see Figure 19). In case of exist a selected element in the list, the button is activated and the transition leads again to the same state, to include the selected element (and others) to the list. This generates the following lines of code for the method on the listened element.

/** @List */

void selected_articles_List_QueryCatalogue_GUI() {

 if (results_List.getSelectedIndex()==-1)
 add_to_cart_Button.setEnabled(false);

 else add_to_cart_Button.setEnabled(true);

}

The activation of the button (add_to_cart.Button.setEnabled) implies the button has been before declared in the panel, created and added.

public class Purchase extends QueryCatalogue {

 /** @GUIcomponents */

 public JButton add_to_cart_Button = new JButton();

 private void jbInit() throws Exception {

 /** @Button */

 name_Button.setText("Add to cart");

 name_Button.addActionListener(

 new java.awt.event.ActionListener() {

 public void actionPerformed(ActionEvent e) {

 add_to_cart_Button_nameClass_GUI(); } });

 /** @Panel */

 this.getContentPane().add(add_to_cart_Button, null);

 } // end jbInit()

 // Methods ...
 /** Button */

 void add_to_cart_Button_className_GUI() { ... }

}
Following the trace of the example, the other two button-transitions that leave the state Query catalogue remain disabled until the cart is not empty (button Add to cart):

/** @Button */

void add_to_cart_Button_Purchase_GUI() {

 show_cart_Button.setEnabled(true);

 proceed_Button.setEnabled(true);

}

Once the buttons is activated, two other states can be reached from the state Query catalogue: (a) the state Shopping cart, whether the button Show cart is pressed; or (b) the state Confirm Proceed, whether the button Proceed is pressed. Since both states are not stereotyped, they are translated into two independent windows (frames), with independent behaviours in user-interaction diagrams, also independent (i.e., with an initial state and another end state).
Nevertheless, this encapsulated behaviour (i.e., a user-interaction diagram) can be interrupted by means of conditioned simple transitions (or simply “simple transitions”). Simple transitions are those transitions that are labelled only by a condition (p.e., [Screen], [Accept], [Close] and [Exit]). These transitions refer to an action of pressing a button that exists inside the non-terminal state (a window). For instance, the button-transitions [Accept] and [Screen] refer that, being in the state (frame) Confirm Proceed the user presses one of these buttons, and one returns to the state (frame) Query catalogue. The same for the transition [Close].
Nevertheless there is a special case of simple transition: that one that does not come from another state, but it departs from the target state. For example, the simple transition [Exit] means that there has been pressed the button Exit inside the frame Query catalogue, whose behaviour is defined in another independent user-interaction diagram (in which the button is defined). In any case, both the simple-transitions of the type[Accept] or of the type [Exit] the interpretation in the code is reflected by means of a listener operation on those buttons of the window (class) containing the buttons, that interrupts the normal interaction sequence of the above mentioned class.

public class Purchase extends QueryCatalogue {

 ...

 private void jbInit() throws Exception {

...
 // Listener on children

 /** @Button */

 shoppingcart_GUI.close_Button.addActionListener(
 new java.awt.event.ActionListener() {

 public void actionPerformed(ActionEvent e) {

 close_Button_ShoppingCart_GUI(); } });

 /** @Button */

 confirmproceed_GUI.accept_Button.addActionListener(...);

 /** @Button */

 confirmproceed_GUI.cancel_Button.addActionListener(...);

 }

 ...

}
The Appendix B partially shows the java code of one of the five classes of the project example: the class ShoppingCart. This information is available in the following web page: http://indalog.ual.es/mdd/purchase.

CONCLUSIONS AND FUTURE WORK
In this chapter, we have studied a model-driven development technique for GUI design. We have defined a new kind of UML diagram (i.e. the user-interface diagram) which specialises the use case diagram for user interface design. In addition, we have shown how to describe use cases by means of specialized activity diagrams (user-interaction diagrams), in order to specify the user interface of each use case. Finally, we have shown how to generate class diagrams for GUI, and how to build rapid prototypes for the user interface. As future work, we plan to study the following extensions of our work:

(a) integrate the user interface view with the data and business logic;

(b) incorporate our method in a CASE tool in order to automate it;

(c) integrate our technique in the whole development process.

ACKNOWLEDGEMENTS
This work has been partially supported by the Spanish project of the Ministry of Science and Technology TIN2005-09207-C03-02 and TIN2006-06698 under FEDER funds.

REFERENCES
Anderson, D. J. (2000). Extending UML for UI. In UML'2000 Workshop on Towards a UML Profile for Interactive Systems Development (TUPIS'2000), York - UK - October 2/3.

Campos, P. F. & Nunes, N. J. (2005). A UMLbased tool for designing user interfaces. UML 2004 Satellite Activities, LNCS 3297 (pp. 273–276).

CommentEdition. (2000). UIRupture (Tech. Rep.). UIDesign. http://www.uidesign.net
Conallen, J. (1999). Modelling web application architectures with UML. Communications of the ACM, 42 (10), 63–70.

Constantine, L. L. & Lockwood, L. A. D. (2001). Structure and style in use cases for user interface design. In M. van Harmelen (Ed.), Object Modelling and User Interface Design (pp. 245 – 279) Addison-Wesley Longman Publishing,USA.
Elkoutbi, M. & Keller, R. K. (2000). User Interface Prototyping Based on UML Scenarios and HighLevel Petri Nets. International Conference on Application and Theory of Petri Nets (ICATPN 2000), LNCS 1825 (pp. 166–186).

Elkoutbi, M., Khriss, I. & Keller, R. K. (1999). Generating user interface prototypes from scenarios. Requirements Engineering’99 (pp. 150-158). IEEE Computer Society.

Harel, D. & Gery, E. (1997). Executable object modelling with statecharts. IEEE Computer 30(7), 31–42.

Heumann, J. (2003). User experience storyboards: Building better UIs with RUP, UML and Use Cases (Tech. Rep.). Rational Software.

Ilogix. (2006). Rhapsody 6.2. Iogix/Telelogic. http://www.ilogic.com
Ilogix. (2006). Statemare. Iogix/Telelogic. http://www.ilogic.com

Kovacevic, S. (1998). UML and User Interface Modeling. UML’98, LNCS 1618 (pp. 253–266).

Lieberman, B. (2004). UML activity diagrams: Detailing user interface navigation (Tech. Rep. 29 April). Rational Software.

Nunes, N. J. & Falcao e Cunha, J. (2001). Wisdom a UML based architecture for interactive systems. DSVIS 2000, LNCS 1946 (pp. 191–205).

Nunes, N. J. (2003) Representing UserInterface Patterns in UML. In D. Konstantas et al., editor, Object-Oriented Information Systems, LNCS 2817 (pp. 142–151).

OMG (2005). Unified Modeling Language Specification (Tech. Rep. No 2). Object Management Group.

Paterno, F. (2001). Towards a UML for interactive systems. EHCI 2001, LNCS 2254 (pp. 7–18).

Pinheiro da Silva, P. & Paton, N. W. (2000). User interface modelling with UML. Information Modelling and Knowledge Bases XII (pp. 203– 217). IOS Press.

Schäfer, W. (2002). Fujaba documentation (Tech. Rep.). University of Paderborn.

APPENDIX A. GUI CODE PATTERNS
	User-Interaction stereotype
	Code generation

	<<JButton>

name
	import java.awt.event.*;

public class className extends JFrame {

 /** @GUIcomponents */

 public JButton name_Button = new JButton();

 private void jbInit() throws Exception {

 /** @Button */

 name_Button.setText("name");

 name_Button.addActionListener(

 new java.awt.event.ActionListener() {

 public void actionPerformed(ActionEvent e) {

 name_Button_nameClass_GUI(); } });

 /** @Panel */

 this.getContentPane().add(name_Button, null);

 } // end jbInit()
 /***

 * Method THIS

 */

 /** Button */

 void name_Button_className_GUI() { ... }

}

A.1. Mapping transitions (buttons) into code

	User-Interaction stereotype
	Code generation

	<<JLabel>>

name
	public class className extends JFrame {

 /** @GUIcomponents */

 public JLabel name_Label = new JLabel();

 private void jbInit() throws Exception {

 /** @Label */

 name_Label.setText("name");

 /** @Panel */

 this.getContentPane().add(name_Label, null);

 } // end jbInit()

}

A.2. Mapping labels to code

	User-Interaction stereotype
	Code generation

	<<JTextField>>

name
	public class className extends JFrame {

 /** @GUIcomponents */

 public JLabel name_Label = new JLabel();

 public JTextField name_TextField = new JTextField();

 private void jbInit() throws Exception {

 /** @Label */

 name_Label.setText("name");

 /** @Panel */

 this.getContentPane().add(name_Label, null);

 this.getContentPane().add(name_TextField, null);

 }// end jbInit()
}

A.3. Mapping textfields to code

	User-Interaction stereotype
	Code generation

	<<JList>>

name

	import javax.swing.event.*;
public class className extends JFrame {

 /** @GUIcomponents */

 public JLabel name_Label = new JLabel();

 public JScrollPane name_ScrollPane = new JScrollPane();

 public JList name_List = new JList();

 private void jbInit() throws Exception {

 /** @Label */

 name_Label.setText("name");

 /** @List */

 name_ScrollPane.getViewport().add(name_List, null);

 name_List.addListSelectionListener(

 new javax.swing.event.ListSelectionListener() {

 public void valueChanged(ListSelectionEvent e) {

 selected_articles_List_ShoppingCart_GUI(); } });

 /** @Panel */

 this.getContentPane().add(name_Label, null);

 this.getContentPane().add(name_ScrollPane, null);

 } // end jbInit()

 /***

 * Method THIS

 */

 /** @List */

 void selected_articles_List_ShoppingCart_GUI() { ... }

}

A.4. Mapping lists to code

APPENDIX B. THE SHOPPING CART FRAME
	public class ShoppingCart extends JFrame {

 /** @GUIcomponents */

 public JLabel shopping_cart_Label = new JLabel();

 public JLabel selected_articles_Label = new JLabel();

 public JButton remove_article_Button = new JButton();

 public JButton close_Button = new JButton();

 public JScrollPane selected_articles_ScrollPane = new JScrollPane();

 public JList selected_articles_List = new JList();

 /** @GUI */

 ConfirmRemoveArticle confirmremovearticle_GUI = new ConfirmRemoveArticle();

 public ShoppingCart() { // Constructor }

 private void jbInit() throws Exception {

 /** @Label */

 shopping_cart_Label.setText("Shopping Cart");

 ...

 /** @Button */

 remove_article_Button.setText("Remove article");

 remove_article_Button.setEnabled(false);

 remove_article_Button.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(ActionEvent e) {

 remove_article_Button_ShoppingCart_GUI(); } });

 ...

 /** @List */

 selected_articles_ScrollPane.getViewport().add(selected_articles_List, null);

 selected_articles_List.addListSelectionListener(...);

 /** @Panel */

 this.getContentPane().add(close_Button, null);

 ...

 /***

 * Listener on children

 */

 confirmremovearticle_GUI.cancel_Button.addActionListener(...);

 confirmremovearticle_GUI.accept_Button.addActionListener(...);

 } // end jbInit()

 /***

 * Methods THIS

 */

 /** @Button */

 void remove_article_Button_ShoppingCart_GUI() {

 this.setEnabled(false); confirmremovearticle_GUI.setVisible(true);

 }

 /** @Button */

 void close_Button_ShoppingCart_GUI() { this.setVisible(false); }

 /** @List */

 void selected_articles_List_ShoppingCart_GUI() {

 remove_article_Button.setEnabled(true);

 }

 /***

 * Methods children

 */

 /** @Button */

 void cancel_Button_ConfirmRemoveArticle_GUI() { this.setEnabled(true); }

 /** @Button */

 void accept_Button_ConfirmRemoveArticle_GUI() { this.setEnabled(true); }

}

