
XQuery Optimization Based on Program Slicing ∗

Jesús M.
Almendros-Jiménez
Dpto. de Lenguajes y

Computación
Universidad de Almería

Carretera de Sacramento s/n
E-04120 Almería, Spain

jalmen@ual.es

Josep Silva
Dpto. de Sistemas

Informáticos y Computación
Universitat Politècnica de

València
Camino de Vera s/n

E-46022 Valencia, Spain
jsilva@dsic.upv.es

Salvador Tamarit
Dpto. de Sistemas

Informáticos y Computación
Universitat Politècnica de

València
Camino de Vera s/n

E-46022 Valencia, Spain
stamarit@dsic.upv.es

ABSTRACT
XQuery has become the standard query language for XML.
The efforts put on this language have produced mature and
efficient implementations of XQuery processors. However,
in practice the efficiency of XQuery programs is strongly
dependent on the ability of the programmer to combine dif-
ferent queries which often affect several XML sources that
in turn can be distributed in different branches of the or-
ganization. Therefore, techniques to reduce the amount of
data loaded and also to reduce the intermediate structures
computed by queries is a necessity. In this work we propose
a novel technique that allows the programmer to automat-
ically optimize a query in such a way that unnecessary in-
termediate computations are avoided, and, in addition, it
identifies the paths in the source XML documents that are
really required to resolve the query.

Categories and Subject Descriptors
H.2 [DATABASE MANAGEMENT]: H.2.3 Languages—
Query languages; F.3 [LOGICS AND MEANINGS OF
PROGRAMS]: F.3.2 Semantics of Programming Languages—
Program analysis

General Terms
Languages

Keywords
XQuery, Slicing, Query Optimization

∗This work has been partially supported by the Spanish
Ministerio de Ciencia e Innovación under grants TIN2008-
06622-C03-02 and TIN2008-06622-C03-03, by the Generali-
tat Valenciana under grant PROMETEO/2011/052, and by
the Junta de Andalućıa under grant TIC-6114. Salvador
Tamarit was partially supported by the Spanish MICINN
under FPI grant BES-2009-015019.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1. INTRODUCTION
XQuery [21, 6] is a typed functional language devoted to

express queries against XML documents. It contains XPath
[2] as a sublanguage. XPath supports navigation, selection
and extraction of fragments from XML documents. XQuery
also includes flowr expressions (i.e. for-let-orderby-where-
return expressions) to construct new XML values and to join
multiple documents. The design of XQuery has been influ-
enced by group members with expertise in the design and
implementation of other high-level languages. XQuery has
static typed semantics which is part of the W3C standard
[6, 21].

XQuery has evolved into a widely accepted query language
for XML processing and many XQuery engines have been
developed [12, 8, 3, 14, 10, 16]. However, memory con-
sumption and execution time remains a crucial bottleneck
in query evaluation. Queries against large data sources re-
quire the improving of data loading and buffering together
with XQuery optimization. Sometimes the refactoring of
the XQuery or the pre-filtering of the source XML files is
mandatory to be able to process large XML documents. As
a matter of fact, standard XML processors have a maximum
size in the XML documents they can process. Nevertheless,
some XML documents such as the XML version of DBLP
are very large and could require pre-processing and query
optimization to be handled.

In this work we introduce a novel technique able to auto-
matically project the portion of the input XML document
that is needed to resolve a given XQuery expression (thus
the remaining parts of the document are not loaded), and
at the same time, it also allows us to optimize the XQuery
itself with a refactoring process based on program slicing.

Program slicing is a general technique of program analysis
and transformation whose main aim is to extract the part
of a program (called slice) that influences or is influenced
by a given point of interest [22, 20]. Program slicing has
been traditionally based on a data structure called program
dependence graph (PDG) [9] that represents all statements
in a program with nodes and their control and data depen-
dences with edges. Once the PDG is computed, slicing is
reduced to a graph reachability problem, and slices can be
computed in linear time.

Our slicing-based technique aims to provide an optimiza-
tion method for XQuery. Given a (composed) query, we are
able to detect those parts of the XQuery code which are not
relevant for the output of the query. In addition, we are able
to rewrite the query into a new one in which the irrelevant

parts have been removed. Unfortunately, the PDG cannot
be used with XQuery because the notion of statement is not
applicable to functional languages. Therefore, firstly, we will
define a notion of XQuery Dependence Graph (XDG) which
is a labelled graph able to represent XQuery expressions.
Secondly, we will describe how to transform an XDG in order
to optimize an XQuery expression in such a way that only
those expressions that contribute to the final result remain
in the graph. The transformation consists on forward and
backward propagation of data dependences together with an
slicing procedure in order to detect the required paths in an
XQuery expression. From the transformed XDG we extract
a new optimized XQuery and, additionally, we deduce the
parts of the documents used by the XQuery expression.

Example 1. The following composed query requests the
customer elements obtained from a nested query in which
all customer, and some provider elements are computed.

Q1 = for $i in (doc(‘File’)/company)
return <sales>{($i/customer, if ($i/provider=‘X’)

then () else $i/provider)}</sales>
Q2 = for $j in Q1

return $j/customer

This query shows an example of query optimization. Given
that the provider elements are never used by Q2, they can
be pruned from Q1 when they are composed. This produces
an equivalent optimized query.

The structure of the paper is as follows. Section 2 presents
the related work. Section 3 introduces some preliminaries.
The XDG is introduced in Section 4, and the slicing algo-
rithms are presented in Section 5. Section 6 describes the
implementation. Section 7 presents our experimental re-
sults. Finally, Section 8 concludes and presents future work.

2. RELATED WORK
There exist two major research lines concerning the op-

timization of XQuery. The first line tries to improve the
processing of the XML input data. The second line oper-
ates over the source XQuery expressions transforming them
to improve efficiency.

On one hand, XML document loading and buffering tech-
niques have been studied in [17, 1, 4, 19]. The static projec-
tion technique of [17] of input XML documents implemented
in the Galax [8] processor and refined in [1, 4] proposes that
only the parts of the input documents relevant to query eval-
uation are loaded into memory. The projected documents
are computed before query evaluation starts. In the case of
[19], they distinguish bulk input data only used to generate
the output from input data which are traversed in query
evaluation, improving XML projection.

On the other hand, XQuery optimization techniques have
been proposed. In [13], they describe a technique for prun-
ing XQuery in order to improve composition based queries.
Rather than projecting XML documents, they project XQue-
ry sub-expressions with respect to other sub-expressions que-
rying them. In other words, they propose the pruning of
queries in which an (intermediate) result computed by means
of a query is used as input of another query.

Our work follows the same line as [13] and [17], providing
a query optimization technique based on query transforma-
tion which combines prunning and projection. However, our
technique is much more precise because it uses a data depen-
dence analysis that is performed bottom-up and top-down in

the XQuery expression. Contrarily, their pruning technique
is a bottom-up analysis that fails to prune many useless ex-
pressions as shown in the following XQuery expression:

for $j in (for $i in <A>...<C>...</C>
return $i) return $j/B

Clearly, in this expression, the C elements are not necessary
and can be removed. However, this simplification cannot
be detected by their pruning technique (that would leave
the query unchanged). The reason is that they only use a
bottom-up analysis. Hence, when some inner subexpression
is pruned, they do not have information about the outer
subexpressions, thus missing pruning opportunities.

Example 2. The following query presented in [13] re-
quests the close_auction elements obtained from a nested
query in which the elements computed are open_auction el-
ements enclosed by means of the label site.

for $j in <site>{for $i in (doc(‘File1’)/site)
return $i/open_auctions/open_auction

}</site>
return for $k in (doc(‘File2’)/site)

where $j/person = $k/people/person
return <common_auction>{$j/closed_auction}

</common_auction>

The pruning technique in [13] would produce the following
simplified query:

for $j in <site>{()}</site>
return for $k in (doc(‘File2’)/site)

where $j/person = $k/people/person
return <common-auction>{()}</common-auction>

However, this simplification is suboptimal and it can be
further optimized in our approach: the nested query does not
compute close_auction nor person elements and therefore
the query can be completely pruned because the where clause
cannot be satisfied (i.e., the final query should be the empty
sequence ()).

In our technique, the same analysis performed to prune
XQuery expressions provides the information needed to pro-
ject the source XML documents. This means that with the
XDG we can also project the XML documents that partic-
ipate in the XQuery expression as it is done in [17]. Let
us remark that the projecting technique of [17] is also im-
proved here by means of our query optimization technique.
For instance, in Example 1 provider elements will not be
projected from the input XML document.

There has been previous attempts to define a PDG-like
data structure for functional languages. The first attempt
to adapt the PDG to the functional paradigm was [18] where
they introduced the functional dependence graph (FDG).
Unfortunately, FDGs are useful at a high abstraction level
(i.e., they can slice modules or functions), but they can-
not slice expressions and thus they are useless for XQuery.
Another approach is based on the term dependence graphs
(TDG) [7]. However, these graphs only consider term rewrit-
ing systems with function calls and data constructors (i.e.,
no complex structures such as let-expressions, for-expressions,
if-then-else, etc. are considered). Finally, another use of
program slicing has been done in [5] for Haskell. But in this
case, no new data structure was defined and the abstract
syntax tree of Haskell was used with extra annotations about
data dependences.

Figure 1: Graph Representation of XQuery Expressions

Expr ::= Literal
| (Expr1, . . . , Exprn)
| V ar
| doc(Literal)
| Path
| for Var in Expr (where Expr)? return Expr
| let Var := Expr (where Expr)? return Expr
| if (Expr) then Expr else Expr
| Expr Op Expr
| Tag

Tag ::= <QName> LExpr1 . . . LExprn <\QName>
LExpr ::= {Expr} | Literal | Tag
Path ::= Expr (/QName)+

V ar ::= $V arName
Op ::= < | > | = | + | − | ∗ | / | and | or

Figure 2: Syntax of XQuery expressions

3. PRELIMINARIES
For the sake of concreteness, in the rest of the paper

we will consider the subset of the XQuery core language
shown in Figure 2. We need to introduce a normaliza-
tion process for XQuery expressions. This process ensures
that (1) all variables defined in both let and for expres-
sions are pairwise different, that is, they are renamed when
they coincide; and (2) all Path expressions start with a
variable. The normalization substitutes e (/QName)+ by
let $x := e return $x (/QName)+, whenever e is not a V ar
expression, where $x is a new variable, and e is recursively
normalized.

Example 3. The query of Example 1:

for $j in for $i in (doc(‘File’)/company)
return <sales>{($i/customer, if ($i/provider=‘X’)

then () else $i/provider)}</sales>
return $j/customer

is normalized as follows:

for $j in for $i in let $v := doc(‘File’)
return $v/company

return <sales>{($i/customer, if ($i/provider=‘X’)

then () else $i/provider)}</sales>
return $j/customer

We define functions first, suffix and last to extract a
portion of a normalized path as follows:
first($x (/QName)+) = $x,
suffix ($x (/QName)+) = (/QName)+,
last($x /QName1 . . . /QNamen) = QNamen.

4. XQUERY DEPENDENCE GRAPHS
In this section we define the XQuery dependence graph

(XDG). Such data structure is one of the main contributions
of this work. It allows us to graphically represent XQuery
expressions establishing data and control relations between
subexpressions. Therefore, it is very useful for refactoring
and, in particular, it is the basis of our slicing algorithms
for XQuery. First, we define the graph representation of a
XQuery expression.

Definition 1 (Graph Representation). Given a nor-
malized XQuery expression e, we represent e with a labelled
graph (N , E ,F) where N are the nodes, E = (C,S) are edges
of two types: C the control edges, and S the structural edges,
and F is a set of partial functions:

type : N → T
literal : N → Literal
children : N → P(Nat ×N)
var : N → V ar
path : N → Path
op : N → Op
tag : N → Tag

The set F of partial functions defines the labels of each
node in the graph. Function type returns the type of a node.
T is the set of node types: literal, seq, var, doc, path, let-
Binding, forBinding, where, return, if, then, else, op and tag.
Type seq represents a sequence of elements in a tuple or in
a Tag element. Function literal is defined for nodes of type
literal including elements doc(literal). The partial function
children is defined for nodes of type seq and op. It returns
a set of pairs of the form (pos, n) where pos is the position
in the sequence or operation of the expression represented

Figure 3: XQuery Dependence Graph of the running example

by node n. Function var, is defined for binding nodes (i.e,
forBinding and letBinding) and represents the bound vari-
able. The other functions are defined for nodes of type path,
op and tag, respectively, and their results are straightfor-
ward. We denote by fF the meaning that F assigns to the
function f .

The graph representation of a XQuery expression is con-
structed compositionally according to the cases of Figure 1.
In such representation, each graph has a final node (which
has been graphically distinguished with a bold line) except
if-then-else that has two final nodes. The nodes with a
dashed line represent the graph associated to their subex-
pression, and all nodes connected to a dashed node are linked
to the final nodes of the graph represented by the dashed
node. We have graphically distinguished the two kinds of
edges: control edges with a solid line, and structural edges
with a dashed line. In addition, nodes are graphically repre-
sented including the information provided by means of the
associated partial functions.

We are now in a position to define our main data struc-
ture called XQuery Dependence Graph (XDG). Essentially,
the XDG augments the graph representation of a XQuery
expression with the standard notion of data dependence of
static analysis (see, e.g., [20]). Formally,

Definition 2 (XQuery Dependence Graph). Given
a XQuery expression e, the XQuery Dependence Graph (XDG)
of e is a directed labelled graph X = (N , E ,F) where N are
the nodes and E = (C,S ,D) are the edges. (N , E ′,F ′) is
the graph representation of e being E ′ = (C,S) with C the
control edges, and S the structural edges. The set D rep-
resents data edges. We have a data edge from node n to
n′ iff first(path(n)) = var(n′). F is a set containing the
functions in F ′ plus a partial function called label which re-
turns a set of pairs of the form (Ppath, boolean) for each
data edge, that is, label : D → P(Ppath × boolean).

In the previous definition Ppath denotes partial paths of
the form: Ppath = ($ | QName) (/QName)∗. Functions
first , suffix and last can be also defined for partial paths.
Given pp = ($ | QName) (/QName)∗ we have:
first(pp) = ($ | QName) and suffix (pp) = (/QName)∗;

in addition, last(($ | QName) /QName1 . . . /QNamen) =
QNamen if n ≥ 1, and ($ | QName), otherwise.

Observe that the definition of XDG uses the standard no-
tion of data dependence (see, e.g., [9]). In the case of XQuery
the notion of variable definition and variable usage is similar
to the other languages. In particular, variables are always
defined in forBinding and letBinding nodes and they are
used in any node that contains this variable (i.e., there ex-
ists a data edge from node n to n′ when first(path(n)) = $v
and var(n′) = $v). Observe that, thanks to the normaliza-
tion process, no redefinition of a variable is possible, thus,
all uses of a particular variable data-depend on the same
variable definition.

The labels of the data edges are useful to know what in-
formation (i.e., partial paths) is required and provided by
each node (i.e., true means that the partial path could1

be provided by the node, and false means that it cannot
be provided). Such labels represent complete or incomplete
paths from a bound variable. The name of the bound vari-
able does not need to be specified in edges, for this reason
we have used the notation $ in partial paths.

Example 4. The XDG of the normalized XQuery in Ex-
ample 3 is shown in Figure 3 where nodes are identified
with numbers. We have graphically represented the function
children by means of sequences (#n1, . . . , #nk) represent-
ing the order of the children. The example contains five data
dependence edges (the dotted edges) representing the request
of $j/customer from the outermost for (A), the request of
$i/customer (A) and $i/provider (B) from the innermost
for, and the request of $v/company from the let expression
(C). Let us remark that initially they are marked as true,
but the proposed slicing algorithms will update such boolean
values.

5. SLICING XQUERY
In this section we describe how to transform a XDG in

order to optimize an XQuery expression in such a way that
only those expressions that contribute to the final result re-
main in the graph. From the final transformed XDG we can
1Whether the path is actually provided or not depends on
the XML source.

(i) extract a new optimized query and (ii) deduce the parts
of the source documents used by the query that are really
needed.

The transformation is divided into two independent stages.
In the first stage, all data dependences are propagated for-
wards and backwards in order to determine which expres-
sions are needed and which of them are available. This
process mainly affects data edges: labels of data edges are
updated, and some new data edges can be also added or
deleted. In the second stage, by means of an slicing proce-
dure, those expressions that are useless are removed, and the
graph is further transformed to ensure that the final XQuery
expression is syntactically correct. In addition, there is a
garbage removal procedure that can be applied before and
after propagation and slicing procedures.

Now, we define some notation that will be used in the
slicing algorithms. Given a XDG G = (N , (C,S ,D),F):

(1) We use ineE(n) and outeE(n) to denote, respectively,
the incoming and outgoing edges of a node n ∈ N be-
longing to a certain set E :

ineE(n) = {(n′ → n) | (n′ → n) ∈ E}
outeE(n) = {(n → n′) | (n → n′) ∈ E}

Note that the set E is parameterizable; e.g., ineS(n)
denotes the incoming structural edges of n. Analo-
gously, we use innE(n) and outnE(n) to denote, re-
spectively, the input and output nodes of a node n
w.r.t. a certain set E :

innE (n) = {n′ | (n′ → n) ∈ E}
outnE(n) = {n′ | (n → n′) ∈ E}

(2) Function reachableG(n), denotes the set of data and
structural edges reachable from a node n ∈ N :

reachableG(n) =
S

(n→n′)∈outeD∪S(n)

{(n → n′)} ∪ reachableG(n′)

(3) Finally, we denote by init(G) the set of initial nodes
of G, which is defined as the set of binding nodes (i.e.,
forBinding and letBinding) that are not reachable from
other binding nodes by traversing forwards data and
structural edges. Formally:

init(G) = {n ∈ N | typeF(n) ∈ {letBinding, forBinding}
∧ (6 ∃nprev ∈ N :

typeF(nprev) ∈ {letBinding, forBinding}
∧ n ∈ reachableG(nprev))}

Observe that initial nodes of a graph G can be com-
puted in linear time by traversing G. As an example,
in Figure 3 the only initial node is node 0.

5.1 Garbage removal
We can remove from the XDG all the letBinding nodes

that are not the target of a data edge. Such bindings are
useless in the XQuery expression: they represent variables
that are declared and not used. Note that forBinding nodes
cannot be removed because they can be useful for iteration

even if they do not have incoming data edges. It provides our
first optimization step, and in addition, it avoids to traverse
such nodes in the next stages. Such garbage removal can
be done in linear time with respect to the size of the XDG
and it must be done before and after both stages of the
transformation because the propagation of dependences and
the slicing process itself could remove the incoming data
edges of a letBinding node producing new garbage. The
Algorithm 1 implements the garbage removal process.

Algorithm 1 Garbage Removal

Input: A XDG G = (N , E = (C,S ,D),F)
Output: A XDG G′

repeat
Garbage := {n ∈ N | typeF(n) = letBinding

∧ ineD(n) = ∅}
for each node n ∈ Garbage

G := deleteFrom(n,G)
until Garbage = ∅
return G

Algorithm 2 deleteFrom Function

Function deleteFrom(n,G = (N , E = (C,S ,D),F))
for each node ns ∈ (outnS(n) ∪ innC(n))

G := deleteFrom(ns, G)
E := E\(ineS∪D(n) ∪ outeD∪C(n))
N := N\{n}

return G

Note that, the removal of a letBinding node (and all its re-
lated nodes) is implemented with function deleteFrom in
Algorithm 2. This function starts from a given node and re-
moves recursively all the nodes reachable from them, follow-
ing structural edges forwards and control edges backwards;
it also removes all their structural/data edges. Observe
also that the application of this function could produce new
garbage and thus the process is repeated until no garbage
exists in the XDG.

5.2 Propagating dependences
This phase propagates data dependences through the XDG.

Such propagation must be done forwards and backwards.
Roughly speaking, the forward propagation says what (sub)

paths are required by the expressions in the XQuery. And
the backward propagation says which of these (sub)paths
could be provided to the expressions that required them. Ba-
sically, propagation is as follows: the data dependences are
represented by means of labelled edges in which a partial
path is requested by a certain (sub)expression. The forward
propagation starts from initial nodes and follows structural
and data edges in order to (1) update labelled data edges
with false whenever the partial path cannot be obtained,
(2) delete useless data edges, and (3) add new data edges.
The backward propagation updates the data edges from the
forward propagation.

1. Forward Algorithm (see Algorithm 3):

(i) The forward algorithm starts from the initial nodes
and propagates forward partial paths of data edges.

Algorithm 3 Propagating Dependences Forwards

Input: A XDG G
Output: A XDG G′

for each node n ∈ init(G) (i)
G := propagateForward(n,G)

return G

Function propagateForward(n,G=(N ,(C,S ,D),F))
nl := ∅
for each edge e ∈ ineD(n)

for each tuple (pp, bool) ∈ labelF(e)
fst := first(pp)
suf := suffix (pp)
case typeF(n) of (ii)
tag: if fst ∈ {tagF (n), $}

then nl := nl ∪ {(suf, true) | suf 6= “”}
∪{($, true) | suf = “”}

else labelF (e) := (labelF(e)\{(pp, bool)})
∪{(pp, false)}

path: if fst ∈ {last(pathF(n)), $}
then nl := nl ∪ {(pathF (n)/suf, true)}
else labelF(e) := (labelF(e)\{(pp, bool)})

∪{(pp, false)}
literal, op: if pp 6= $

then labelF(e) := (labelF (e)\{(pp, bool)})
∪{(pp, false)}

seq: if outeS(n) = ∅
then labelF (e) := (labelF(e)\{(pp, bool)})

∪{(pp, false)}
otherwise: nl := nl ∪ {(pp, true)}

if nl = ∅ then D := D \ outeD(n) (iv)
for each node nchild ∈ outnS(n)

deleteFrom(nchild,G)
return G

else for each edge e ∈ outeS∪D(n) (iii)
D := D ∪ {e}
labelF(e) := nl

for each node nchild ∈ outnS∪D(n)
G := propagateForward(nchild,G)

return G

(ii) For each data edge and each partial path of a data
edge, it proceeds depending on the type of the
node. Whenever the requested partial path does
not match with the node, that is, for instance,
the requested partial path is p/... and the node
has the form /.../q or < q > ... < /q >, p 6= q,
then it updates the partial path p/... to false,
that is, it adds the label (p/...,false) to the edge.
Otherwise, it propagates forward true following
the data and structural edges.

(iii) In addition, the forward propagation has to up-
date partial paths. For instance, p/q/r/... is prop-
agated to the children of p/q by means of the par-
tial path r/....

(iv) When the forward propagation following data ed-
ges is not possible (e.g., we require a path p/q
from an element p/r with q 6= r), the algorithm
uses the auxiliary function deleteFrom (see Algo-

Algorithm 4 Propagating Dependences Backwards

Input: A XDG G = (N , (C,S ,D),F)
Output: A XDG G′

Pending := {n ∈ N | ineD(n) 6= ∅ ∧ outeD(n) 6= ∅} (i)
for each node n ∈ Pending : Pending ∩ outnD(n) = ∅
(ii)

G := propagateBackward(n,G)
Pending := Pending\{n}

return G

Function propagateBackward(n,(N ,(C,S ,D),F))
nl:={(pp, true) ∈ labelF (e) | e ∈ outeD(n)}∪

{(pp, false) ∈ labelF(e) | e ∈ outeD(n)∧
∀e′ ∈ outeD(n) : ∄(pp, true) ∈ labelF(e′)}

for each edge e ∈ ineD(n) (iii)
for each tuple (pp, bool) ∈ labelF (e)

suf := suffix(pp)
case typeF(n) of
tag: new := {(pp, bool′) | (suf, bool′) ∈ nl}
path: new := {(pp, bool′) |

(pathF(n)/suf, bool′) ∈ nl}
otherwise: new := {(pp, bool′) | (pp, bool′) ∈ nl}

labelF(e) := (labelF(e)\{(pp, bool)}) ∪ new
return (N , (C,S ,D),F)

rithm 2) to remove those nodes that are known
to be useless.

2. Backward Algorithm (see Algorithm 4):

(i) The backward algorithm updates backwards the
labelled data edges from the forward propagation.
It traverses all the nodes which are source and
target of a data edge (the set represented with
Pending).

(ii) However, it must be done with a certain order.
Concretely, a node is analysed whenever its adja-
cent nodes have been already analysed (i.e., n ∈
Pending such that Pending ∩ outnD(n) = ∅).

(iii) The algorithm updates to true and false the de-
pendences obtained with the forward algorithm.
In addition, the updating has to rebuild partial
paths, e.g., a partial path r/... in a node p/q is
propagated as p/q/r/....

Let us remark that both propagation algorithms can be
performed in linear time with respect to the size of the XDG.

Example 5. In Figure 4 we can see the forward and back-
ward propagation of the normalized query in Example 3.
init(G) = 0, thus the forward propagation starts in node
0, propagating A until node 7. Then, B is propagated un-
til nodes 15, 18 and 19 because only customer is required
(i.e., the variable $j is paired with sales). Because node 19
only provides provider elements, and node 18 is the empty
sequence, they cannot provide customer and thus they are
updated to false (C). Moreover, because these nodes can-
not provide required elements, the dependences that start
from them are deleted. Note that the data edge from node
19 to node 2 has been deleted. The dependences (A) and

Figure 4: Forward and backward propagation of the running example

Algorithm 5 Slicing

Input: A XDG G = (N , (C,S ,D),F)
Output: A pruned XDG G′

Pending := {n ∈ N |
(ineD(n) 6= ∅ ∧ ∀e ∈ ineD(n) : ∄(pp, true) ∈ labelF(e))
W

(outeD(n) 6= ∅∧∀e ∈ outeD(n) : ∄(pp, true) ∈ labelF(e))}
(i)
for each node n ∈ Pending : Pending ∩ outnS∪D(n) =∅
(ii)

(G, P ending′) := slicingFrom(n,G) (iii)
C := C\{(n′ → n′′) ∈ C | n′ 6∈ N ∨ n′′ 6∈ N}

Pending := (Pending ∪ Pending′)\{n}
return G

(D) arriving to node 2 are also propagated forward (E) un-
til node 9. This means that we only require elements cus-

tomer and provider from the company elements provided by
node 9. Therefore, the dependence F is updated from E to
express that node 9 only needs company/customer and com-

pany/provider elements. This is then propagated until node
8. In the backward propagation, the (B) dependences between
nodes 10-16 and 10-17 are updated to false (C).

5.3 Slicing algorithm
Once the dependences of the XDG have been propagated,

the optimization technique uses a program slicing-based al-
gorithm to produce a new optimised query.

3. Slicing Algorithm (see Algorithm 5):

(i) The slicing algorithm removes nodes and edges
from the XDG according to the partial paths that
have been set to false by the forward/backward
propagation algorithm. Those nodes that have at
least one data edge and have all incoming or out-
going data edges with all paths labeled with false
are removed. And, moreover, all nodes reachable
from these nodes following structural and control
edges are also removed.

(ii) Nodes have to be analysed in a certain order to
ensure efficiency: a node is analysed whenever
the adjacents have been already analysed (i.e.,
Pending ∩ outnS∪D(n) = ∅).

(iii) The slicing algorithm uses function slicingFrom
shown in Algorithm 6 (which in turn uses the aux-
iliary functions of Algorithms 2 and 7). Function
slicingFrom is the responsible to remove nodes
and edges, and it updates the set Pending. It
distinguishes cases depending on the type of the
node.

Basically, it accurately removes the nodes of Pen-
ding following backward control edges (e.g., if a
node of type return must be removed, then the
associated nodes of types where and forBinding
are also removed). An exception is if-then-else
(removing a node of type then does not implies
removing its associated node of type if). When
a node is removed, all nodes reachable from it
following structural edges are also removed. In
some cases, the elimination of a node requires to
rebuild the graph by replacing the children in the
position of the parent, this is the functionality of
the replaceByChildren function (see Algorithm 7).

Example 6. In the XDG of Figure 4 the slicing process
starts from nodes 18 and 19 because all incoming data edges
are labelled with false. In particular, the set Pending con-
tains nodes 18 and 19 and thus Algorithm 5 performs, e.g.,
a call slicingFrom(18,G) being G the XDG of Figure 4.
Then, the case typeF(n) = seq of Algorithm 6 is executed
with noNext = true and hence, node 18 is removed and
node 16 is included in pending. Then, e.g., it performs a
call slicingFrom(19,G) and the last if of Algorithm 6 is ex-
ecuted because allT rue = ∅ and hence, function deleteFrom
removes node 19. The next calls slicingFrom(16, G) and
slicingFrom(17, G) produce the complete removal of the whole
if-then-else. After unnormalization, the final result produced
is optimal:
Q1 = for $i in (doc(’File’)/company)

return <sales>{$i/customer}</sales>

Q2 = for $j in Q1
return $j/customer

Algorithm 6 SlicingFrom Function

Function slicingFrom(n,G=(N ,E=(C,S ,D),F))
next := outnS(n)
noNext := (next = ∅

W

(next = {nnext} ∧ typeF(nnext) = seq

∧outnS(nnext) = ∅))
allT rue := {e ∈ (ineD(n) ∪ outeD(n)) | ∀(pp, bool) ∈

labelF (e) : bool = true}
if typeF(n) = forBinding

V

(noNext ∨ (allT rue = ∅ ∧ ineD(n) 6= ∅))
then let nr ∈ N : ((n →∗ nr) ∈ C∧typeF(nr) = return)

return (deleteFrom(nr,G), innS (nr))
if typeF(n) = letBinding ∧ noNext
then if ∃nw, nr ∈ N : (n → nw), (nw → nr) ∈ C

then G := deleteFrom(nw,G)
else G := deleteFrom(n,G)

let nr ∈ N : (n → nr) ∈ C
return (replaceByChildren(nr,G), ∅)

if typeF(n) = where ∧ noNext
then let np, nr ∈ N : (np → n), (n → nr) ∈ C

if typeF(np) ∈ {forBinding, letBinding}
then return (deleteFrom(nr,G), innS (nr))
else G = deleteFrom(n,G)
return (replaceByChildren(nr,G), ∅)

if typeF(n) = return ∧ noNext
then return (deleteFrom(n,G), innS (n))
if typeF(n) = if ∧ noNext
then let nt ∈ N : ((n → nt) ∈ C ∧ typeF(nt) = then)

let ne ∈ N : ((n → ne) ∈ C ∧ typeF(ne) = else)
let nchild ∈ N : (nt → nchild) ∈ S
G := deleteFrom(nchild,G)
G := (N\{n, nt}, E\outeE(n),F)
return (replaceByChildren(ne,G), ∅)

if typeF(n) ∈ {then, else} ∧ noNext
then typeF(nf) := seq and childrenF (nf) = ∅

where nf is a new node
G = (N ∪ {nf}, (C,S ∪ {(n → nf)},D),F)
let nif ∈ N : (nif → n) ∈ C

let nt ∈ N : ((nif → nt) ∈ C∧ typeF(nt) = then)
let ne ∈ N : ((nif → ne) ∈ C ∧ typeF(ne) = else)
let nchildt

∈ N : (nt → nchildt
) ∈ S

let nchilde
∈ N : (ne → nchilde

) ∈ S
let nparentt

∈ N : (nparente
→ nt) ∈ S

if typeF(nchildt
) = typeF(nchilde

) = seq

∧ childrenF (nchildt
) = childrenF (nchilde

) = ∅
then G := deleteFrom(nt,G)

G := deleteFrom(ne,G)
G := (N ∪ {nf},

(E\ineE(nt)∪ ineE(ne))∪ (parentt → nf) ∈ S ,F)
return (G, ∅)

if typeF(n) = op

then if next = {nop} ∧ opF (n) = or
then return (replaceByChildren(n,G), ∅)
if next 6= {nop1, nop2}

then return (deleteFrom(n, (N , E ,F)), innS (n))
if typeF(n) = seq

then if noNext
then return ((N\{n}, E\ineE(n),F), innS(n))
if next = {nchild}
then return (replaceByChildren(n,G), ∅)
return (G, ∅)

if allT rue = ∅
then return (deleteFrom(n,G), innS (n))

return (G, ∅)

Algorithm 7 replaceByChildren Function

Function replaceByChildren(n, (N , E ,F))
E := E\ineC(n)
for each n′ ∈ N : (n → n′) ∈ S

E := E ∪ {(np → n′)|(np → n) ∈ E}
E := E\{(n → n′) ∈ E}

N := N\{n}
return (N , E ,F)

5.4 Projecting source documents
When the forward propagation process is finished, we can

check all the data dependences of those nodes that represent
an XML document (i.e., those labeled with doc(Literal)).
These data dependences are a collection of paths that rep-
resent the information required by the query from this par-
ticular XML document. The projection P of the XML doc-
uments can be extracted from the XDG as follows:
P = {(literalF (n), {pp | e ∈ ineD(n)∧(pp, true) ∈ labelF (e)})

| n ∈ N ∧ typeF(n) = doc }
Each one of the computed pairs contains an input XML

file and the paths required from this file.
The projection of XML documents can be done at any

stage after the forward propagation. If it is computed imme-
diately after the forward propagation, the result is equivalent
to the projecting technique in [17]. If we compute it after
the slicing phase, the result is much more precise because
the projection takes advantage of the pruning analysis.

For instance, with the query of Example 2, the projection
information that we get after the forward propagation is:

{(File1, ∅), (File2, {site/people/person})}
In contrast, the projecting information after the slicing

phase is the empty set (no information is really needed from
the XML sources).

6. IMPLEMENTATION
All the algorithms proposed have been implemented and

integrated into a tool called XQSlicer. This tool allows us
to automatically generate an XDG from a given XQuery
expression. The tool has been implemented in Haskell. It
has about 1000 LOC and generates XDGs in dot and jpg

formats. The implementation is composed of eight different
modules that interact to produce the final XDG:

Main This is the main module that coordinates all the
other modules.

Parse Module used to transform XQueries to an internal
representation.

Normalization This module automatically normalizes the
expression introduced by the user.

Graph Creation Creates the initial graph (i.e., without
propagation) according to Definition 1.

Propagation Performs backward and forward propagation
as defined in Algorithms 3 and 4.

Slice Used to obtain the sliced graph after data propaga-
tion. It implements Algorithm 5.

Restore Contains all the needed functionality to produce
the XQuery associated to a given XDG.

Figure 5: Screenshot of the online version of XQSlicer

Dot Generation To obtain a Dot file from a given XDG.

Utilities It contains common and auxiliary functions and
tools used by the other modules.

There is an online version of XQSlicer that can be used
to test the tool. This online version is publicly available at
http://kaz.dsic.upv.es/xqslicer.html. Figure 5 shows
a screenshot of the online version of XQSlicer. The user can
either write down the initial XQuery expression or choose
one from the list of available examples. Once the XDG is
generated (Generate XDG) it is possible to visualize it (View

XDG) and to save it as jpg or dot formats. The same options
are available for the XDG with propagated dependences.
And also for the sliced XDG. For instance, the XDGs in Fig-
ure 5 has been automatically generated by XQSlicer from
the XQuery expression of Example 1. After the XDG is gen-
erated, the tool shows the final XQuery expression produced
after the slicing process and the projecting information.

7. EXPERIMENTAL RESULTS
We tested our approach by means of the BaseX processor

in a Intel machine of 1.60 GHz and 2 GB of RAM. We tested
the following query:

for $j in <site>{

for $i in (doc(‘File1’)/site)

where $i/people/person/@id = "X"

return ($i/open_auctions/open_auction,

for $k in (doc(‘File1’)/site)

return $k/closed_auctions/closed_auction,

$i/people/person)

}</site>

return

for $k in doc(‘File2’)/site

where $j/person = $k/people/person

return

<common-auction>{$j/open_auction}</common-auction>

We used benchmarks for XML documents with (1) 100,
(2) 1000, (3) 10000 and (4) 100000 records. Table 1 shows
the execution time in ms.

Table 1: Execution Time
Records Pruned Original
(1) 100 41,05 131,86
(2) 1000 99,92 3028,35
(3) 10000 447,09 264619,42
(4) 100000 3171,67 > 1 hour

This result shows that the proposed technique not only al-
lows us to save memory by avoiding the computation, stor-
age, and transfer of intermediate data structures. It also
allows us to scale up with respect to the time needed to
process the query. Note that the impact on time is very
significative (from ms. to hours in the last case).

8. CONCLUSIONS
This work introduces a program slicing based technique

to automatically optimize XQuery expressions. This is the
first adaptation of program slicing to XQuery and it has
the advantage that the dependence analysis performed al-
lows us to project the source XML documents and to prune
the XQuery expression. The technique is based on a data
structure, the XDG, that is the adaptation to XQuery of the

well-known PDG used in imperative languages. The defini-
tion of the XDG is by itself an important contribution of this
work because it allows us to perform many other different
static analyses and refactoring transformations for XQuery
expressions that are expressed with this formalism. The way
in which we have defined the XDG for XQuery could be eas-
ily adapted to other functional languages. In fact, we think
that the slicing algorithms could be also adapted with slight
modifications.

One important advantage of our technique is that it pro-
duces XQuery expressions that are executable. This means
that other analyses and tools could use our transformation as
a preprocessing stage simplifying the initial query and pro-
ducing a more accurate and reduced expression that would
predictably speed up the subsequent transformations.

Our proposed slicing technique can be extended in the fu-
ture with some optimizations. For instance, in [11] they pro-
pose a rewriting-based optimization technique for XQuery in
which they change the order of operations checking boolean
conditions before constructing XML elements, and comput-
ing statically path expressions when they are applied to
XML element constructors. In [15] they study under which
conditions query composition can be eliminated and show a
set of rules to this end. We think that the XDG can be used
to improve these transformations.

9. REFERENCES
[1] V. Benzaken, G. Castagna, D. Colazzo, and

K. Nguyên. Type-based XML projection. In
Proceedings of the 32nd International Conference on
Very Large Databases, pages 271–282. VLDB
Endowment, 2006.

[2] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez,
M. Kay, J. Robie, and J. Siméon. XML path language
(XPath) 2.0. W3C, 2007.

[3] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teubner. Pathfinder: XQuery -
The Relational Way. In Proc. of the International
Conference on Very Large Databases, pages
1322–1325, New York, USA, 2005. ACM Press.

[4] S. Bressan, B. Catania, Z. Lacroix, Y. Li, and
A. Maddalena. Accelerating queries by pruning XML
documents. Data & Knowledge Engineering,
54(2):211–240, 2005.

[5] C. Brown. Tool Support for Refactoring Haskell
Programs. PhD thesis, School of Computing,
University of Kent, Canterbury, Kent, UK, 2008.

[6] D. Chamberlin, D. Draper, M. Fernández, M. Kay,
J. Robie, M. Rys, J. Simeon, J. Tivy, and P. Wadler.
XQuery from the Experts. Addison Wesley, Boston,
USA, 2004.

[7] D. Cheda, J. Silva, and G. Vidal. Static slicing of
rewrite systems. Electron. Notes Theor. Comput. Sci.,
177:123–136, June 2007.

[8] M. Fernández, J. Siméon, B. Choi, A. Marian, and
G. Sur. Implementing XQuery 1.0: The Galax
experience. In Proceedings of the 29th International
Conference on Very Large Databases-Volume 29, pages
1077–1080. VLDB Endowment, 2003.

[9] J. Ferrante, K. Ottenstein, and J. Warren. The
Program Dependence Graph and Its Use in
Optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, 1987.

[10] X. Franc. Qizx, a fast XML database engine fully
supporting XQuery, 2003.
http://www.xmlmind.com/qizx/.

[11] M. Grinev and M. Pleshachkov. Rewriting-based
optimization for xquery transformational queries. In
Database Engineering and Application Symposium,
2005. 9th International, pages 163–174. IEEE, 2005.

[12] C. Grün. BaseX. The XML Database, 2011.
http://basex.org.

[13] B. Gueni, T. Abdessalem, B. Cautis, and E. Waller.
Pruning nested XQuery queries. In Proceeding of the
17th ACM Conference on Information and Knowledge
Management, pages 541–550. ACM, 2008.

[14] M. Kay. Ten reasons why Saxon XQuery is fast. IEEE
Data Eng. Bull, 31(4):65–74, 2008.

[15] C. Koch. On the role of composition in XQuery. In
Proc. WebDB, 2005.

[16] C. Koch, S. Scherzinger, and M. Schmidt. The GCX
system: dynamic buffer minimization in streaming
XQuery evaluation. In Proceedings of the 33rd
International Conference on Very Large Databases,
pages 1378–1381. VLDB Endowment, 2007.

[17] A. Marian and J. Simeon. Projecting XML
Documents. In Proc. of International Conference on
Very Large Databases, pages 213–224, Burlington,
USA, 2003. Morgan Kaufmann.

[18] N. F. Rodrigues and L. S. Barbosa. Component
identification through program slicing. In In Proc. of
Formal Aspects of Component Software (FACS 2005).
Elsevier ENTCS, pages 291–304. Elsevier, 2005.

[19] S. Scherzinger. Bulk data in main memory-based
XQuery evaluation. In Proceedings of the 4th
International Workshop on XQuery Implementation,
Experience and Perspectives, pages 1–6. ACM, 2007.

[20] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121–189,
1995.

[21] W3C. XML Query Working Group and XSL Working
Group, XQuery 1.0: An XML Query Language.
Technical report, www.w3.org, 2007.

[22] M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering,
pages 439–449. IEEE Press, 1981.

