
Information Sciences 177 (2007) 2207–2237

www.elsevier.com/locate/ins
A performance comparison of distance-based query
algorithms using R-trees in spatial databases

Antonio Corral *, Jesús M. Almendros-Jiménez

Department of Languages and Computing, University of Almeria, 04120 Almeria, Spain

Received 6 November 2004; received in revised form 20 July 2006; accepted 22 December 2006
Abstract

Efficient processing of distance-based queries (DBQs) is of great importance in spatial databases due to the wide area of
applications that may address such queries. The most representative and known DBQs are the K Nearest Neighbors Query
(KNNQ), q Distance Range Query (qDRQ), K Closest Pairs Query (KCPQ) and q Distance Join Query (qDJQ). In this
paper, we propose new pruning mechanism to apply them in the design of new Recursive Best-First Search (RBFS) algo-
rithms for DBQs between spatial objects indexed in R-trees. RBFS is a general search algorithm that runs in linear space
and expands nodes in best-first order, but it can suffer from node re-expansion overhead (i.e. to expand nodes in best-first
order, some nodes can be considered more than once). The R-tree and its variations are commonly cited spatial access
methods that can be used for answering such spatial queries. Moreover, an exhaustive experimental study was also
included using R-trees, which resulted to several conclusions about the efficiency of proposed RBFS algorithm and its com-
parison with respect to other search algorithms (Best-First Search (BFS) and Depth-First Branch-and-Bound (DFBnB)),
in terms of disk accesses, response time and main memory requirements, taking into account several important parameters
as maximum branching factor (Cmax), cardinality of the final query result (K), distance threshold (q) and size of a global
LRU buffer (B). In general RBFS is competitive for KNNQ and KCPQ where the maximum branching factor (Cmax) is
large enough (even better than DFBnB and very close to BFS), and it is a good alternative when we have main memory
limitations in our computer due to high process overload in our system, since it is linear space consuming with respect to
the height of the R-trees. Nevertheless, RBFS is the worst alternative for qDRQ and qDJQ. DFBnB is also a linear space
algorithm and it obtains the same behavior as BFS for qDRQ and qDJQ; and it is the best when an LRU buffer was
included. Finally, we have been able to check experimentally that BFS is the best for all DBQs, but it can consume many
main memory resources to perform spatial queries.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Spatial databases; Query processing; Search algorithms; Distance-based queries; R-trees; Performance study
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2006.12.012

* Corresponding author. Tel.: +34 950015844; fax: +34 950015129.
E-mail addresses: acorral@ual.es (A. Corral), jalmen@ual.es (J.M. Almendros-Jiménez).

mailto:acorral@ual.es
mailto:jalmen@ual.es

2208 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
1. Introduction

A spatial database system (SDBS) is a database system that offers spatial data types in its data model and
query language and supports spatial data types in its implementation, providing at least spatial indexing and
efficient spatial query processing [32]. In a computer system, these spatial data are represented by points, line-
segments, regions, polygons, volumes and other kinds of 2-d/3-d geometric entities and are usually referred to
as spatial objects. The spatial access methods (SAMs) manage these spatial data to accelerate the spatial query
processing, and one of the most cited SAM is the R-tree [18]. The main reason that has caused the active study
of spatial database management systems (SDBMS) comes from the needs of the existing applications such as
geographical information systems (GIS), computer-aided design (CAD), very large scale integration design
(VLSI), multimedia information systems (MIS), data warehousing, etc. Recently, the role of spatial databases
is continuously increasing in many modern applications; e.g. mapping, urban planning, transportation plan-
ning, resource management, geo-marketing, archeology and environmental modeling are just some of these
applications.

The key characteristic that makes a spatial database a powerful tool is its ability to manipulate spatial
data, rather than simply to store and represent them. The most basic form of such a system is answering
spatial queries related to the spatial properties of data. Some typical spatial queries are the following: (1)
Point query [18] that finds all spatial objects that contain a given query point. (2) Range query [18] that seeks
for the spatial objects that are contained within a given region (usually expressed as a rectangle or a sphere).
(3) Spatial join [6,21,23,19,15,8] that reports all pairs of spatial objects from two spatial datasets that satisfy
a spatial predicate. (4) Finally, very common is the nearest neighbor query [30,20] that seeks for the spatial
object residing more closely to a given reference spatial object. Spatial aggregate queries [32] are usually vari-
ants of the nearest neighbor problem, and they involve a specific region of space and ask for the value of
some aggregate functions (e.g. count, sum, min, max, average, etc.) for which we have measurements for this
given region.

The distance functions are typically based on a distance metric (satisfying the non-negative, identity,
symmetry and D-inequality properties) defined on points in the data space. A general distance metric is called
Lt-distance (Lt) or Minkowski distance between two points, p ¼ ðp1; p2; . . . ; pdÞ and q ¼ ðq1; q2; . . . ; qdÞ, in the
d-dimensional data space, Dd, and it is defined as follows:
Ltðp; qÞ ¼
Xd

i¼1

jpi � qij
t

 !1=t

if 1 6 t <1 and L1ðp; qÞ ¼ max
16i6d

jpi � qij if t ¼ 1
For t ¼ 2 we have the Euclidean distance and for t ¼ 1 the Manhattan distance. They are the most known Lt-
distances. Often, the Euclidean distance is used as the distance function but, depending on the application,
other distance functions may be more appropriate. The d-dimensional Euclidean space, Ed, is the pair
ðDd ; L2Þ. That is, the d-dimensional Euclidean space is the d-dimensional data space, Dd, with the Euclidean
distance. In the following we will use dp instead of L2 as the Euclidean distance between two points and it will
be the basis for DBQs studied on this paper.

In spatial database applications, the nearness or farness of spatial objects is examined by performing
DBQs. The most known DBQs in the spatial database framework that report the top K answers (K is a posi-
tive number given by the users) are the K nearest neighbors (KNNQ) and the K closest pairs queries
(KCPQ), where the nearest neighbor and the closest pair are particular cases for K ¼ 1. They are considered
DBQs, because they use distance functions to measure the degree of nearness between spatial objects, report-
ing only the top K. Other kind of DBQs that involve distance thresholds and report all spatial objects that
fall on a distance range are called q Distance Range Query (qDRQ) and q Distance Join Query (qDJQ). The
former reports all spatial objects from a spatial objects dataset that fall on the distance range defined by
½q1; q2� with respect to a query object, and the latter finds all the possible pairs of spatial objects from
two different spatial objects datasets, having a distance between q1 and q2 of each other (a special case of
qDJQ is Buffer Query [8], where two spatial datasets are involved and q1 ¼ 0 and q2 > 0). Their definitions
for point datasets (the extension of these definitions to other complex spatial objects is straightforward) are
the following:

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2209
Definition (K Nearest Neighbors Query (KNNQ)). Let P be set of points ðP 6¼ ;Þ in Ed and a positive real
number, K. Then, the result of the K nearest neighbors query with respect to a query point q is a set
KNNQ(P,q,K) � P of ordered sequences of K (1 6 K 6 jPj, where jPj is the number of points in the dataset P,
i.e. its cardinality) different points of P, with the K smallest distances from the query object q:
KNNQðP ; q;KÞ ¼
ðp1; p2; . . . ; pKÞ 2 P : pi 6¼ pj; i 6¼ j; 1 6 i; j 6 K and

8pi 2 P � fp1; p2; . . . ; pKg;
dpðp1; qÞ 6 dpðp2; qÞ 6 � � � 6 dpðpK ; qÞ 6 dpðpi; qÞ

8><
>:

9>=
>;
Definition (q Distance Range Query (qDRQ)). Let P be a set of points ðP 6¼ ;Þ in Ed, and a distance range
defined by ½q1; q2� such that q1; q2 2 Rþ and q1 6 q2. Then, the result of the q distance range query with
respect to a query point q is a set qDRQðP ; q; q1; q2Þ � P , which contains all points ðpi 2 PÞ that fall on the
distance range ½q1; q2� from the query point q:
qDRQðP ; q; q1; q2Þ ¼ fpi 2 P : q1 6 dpðpi; qÞ 6 q2g
Definition (K Closest Pairs Query (KCPQ)). Let P and Q be two sets of points (P 6¼ ; and Q 6¼ ;) in Ed, and a
positive real number, K. Then, the result of the K closest pairs query is a set KCPQðP ;Q;KÞ � ðP � QÞ of
ordered sequences of K ð1 6 K 6j P j � j Q jÞ different pairs of points of P � Q, with the K smallest distances
between all possible pairs of points that can be formed by choosing one point of P and one point of Q:
KCPQðP ;Q;KÞ ¼

ððp1; q1Þ; ðp2; q2Þ; . . . ; ðpK ; qKÞÞ 2 ðP � QÞ :

p1; p2; . . . ; pK 2 P ; q1; q2; . . . ; qK 2 Q and

ðpi; qiÞ 6¼ ðpj; qjÞ; i 6¼ j; 1 6 i; j 6 K and

8ðpi; qjÞ � P � Q� fðp1; q1Þ; ðp2; q2Þ; . . . ; ðpK ; qKÞg;
dpðp1; q1Þ 6 dpðp2; q2Þ 6 � � � 6 dpðpK ; qKÞ 6 dpðpi; qjÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
Definition (q Distance Join Query (qDJQ)). Let P and Q be two sets of points (P 6¼ ; and Q 6¼ ;) in Ed, and a
distance range defined by ½q1; q2� such that q1; q2 2 Rþ and q1 6 q2. Then, the result of the q distance join
query is a set qDJQðP ;Q; q1; q2Þ � ðP � QÞ, which contains all the possible different pairs of points that can
be formed by choosing one point of P and one point of Q, having a distance between q1 and q2 of each other:
qDJQðP ;Q; q1; q2Þ ¼ fðpi; qjÞ � P � Q : q1 6 dpðpi; qjÞ 6 q2g
DBQs are very useful in many applications that use spatial data for decision making and other demanding
data handling operations. For example, we can use two spatial datasets that represent the cultural landmarks
and the most populated places of the United States of America. A KNNQ can report the K nearest populated
places to Chicago in increasing order of its distances, and a KCPQ can discover the K closest pairs of cities and
cultural landmarks providing a increase order based on its distances. On the other hand, a qDRQ will find all
cultural landmarks that are within 50 kilometers from Chicago, and a qDJQ will return populated place-cul-
tural landmark pairs that are within 10 kilometers of each other (it is an example of Buffer Query [8]).

Numerous algorithms exist for answering DBQs using R-trees or other tree-like structures. Most these algo-
rithms are focused in the KNNQ over R-trees as spatial access method, from the incremental [20,31] or non-
incremental [30,10] point of view. For the KCPQ in spatial databases using R-trees, [19,33,15,16,29] are the
most representative references in the literature. In [19,33], incremental algorithms based on Best-First Search
and additional priority queues were presented; and in [15,16], non-incremental algorithms following Depth-
First and Best-First Searches were proposed for solving the KCPQ in spatial databases (in [19] is studied
KCPQ with spatial constraints). Non-incremental processing is a technique that reports the elements of a query
result all together, at the end of the algorithm’s execution, assuming that the cardinality of the result K is
known in advance, i.e. the user cannot have any result until the algorithm ends. Incremental processing is a
technique that reports the desired elements of a query result in ascending order of distance in a pipelined

2210 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
fashion (one-by-one), i.e. the user can have part of the final result before the end of the algorithm’s execution.
In other words, when an incremental algorithm has obtained K elements of the result, it is not necessary to
restart the algorithm to find the (K + 1)th element, but just to perform an additional step. qDRQ [32] and
qDJQ [8] have not been studied in-depth in the literature of spatial databases, because they are nature exten-
sions of KNNQ and KCPQ, respectively.

In this paper we mainly propose new Recursive Best-First Search algorithms in non-incremental way for
the most representative DBQs (KNNQ, qDRQ, KCPQ and qDJQ) over R-trees and compare them with
respect to the Best-First Search (BFS) and Depth-First Branch-and-Bound (DFBnB) algorithms. Moreover,
we also present an extensive performance study based on experimental results of the DBQ algorithms applied
on R*-trees [1] with synthetic (uniform) and real datasets, primarily in terms of the I/O activity and response
time, drawing conclusions based on the performance comparison taking into account several execution
parameters to provide useful insights on the choice of search algorithms to researchers and developers.

The rest of the paper is organized as follows. In Section 2, we review previous work on search algorithms
and on DBQs using R-trees; and we describe the main contributions of this paper. Section 3 presents a survey
of the R-tree as the most cited spatial access method; the distance functions and pruning mechanisms used in
the design of branch-and-bound algorithms for DBQs using R-trees; and finally, the Recursive Best-First
Search algorithms for KNNQ, qDRQ, KCPQ and qDJQ over R-trees indexing spatial objects are presented.
In Section 4, experimental results of the proposed algorithms (RBFS) are presented and compared with
respect to other R-tree implementations of search algorithms (BFS and DFBnB) for DBQs using different data
distributions (uniform and real) and taking into account the buffering effect for KCPQ and qDJQ. Finally,
Section 5 presents the conclusions of this paper and gives directions for future work.

2. Related works and motivation

Search is a fundamental problem-solving technique and it consists on a systematic exploration of the space
in order to find one or more goal solutions that have specified properties. In this paper, we focus on the search
space on trees, where leaf nodes are goal nodes and the number of children of a node is refereed by branching

factor of such node. An important application framework of search algorithms is the query processing over
tree-like structures in spatial databases, e.g. algorithms for DBQs over R-trees. In this paper, we deal with
a new search algorithm, following a Recursive Best-First traversal policy, for DBQs in non-incremental
way using R-trees.

2.1. Search algorithms

In general, a search algorithm is an algorithm that takes a problem as input and returns a solution to such a
problem, usually after evaluating a number of possible solutions. In the context of tree structures, a search
algorithm is a strategy to decide which node is the next to explore [38]. Here, we review the most representative
search algorithms that are widely used for problem solving, they are Best-First Search (BFS), Depth-First
Branch-and Bound (DFBnB) and Recursive Best-First Search (RBFS). An excellent survey can be found in
[38].

Best-First Search maintains a partial expanded tree, and each iteration expands the node with minimum
cost, among all nodes that have been generated but not expanded yet, until the optimal result is obtained.
To maintain a partial expanded tree is necessary to manage a global list, so-called global_list, and its size
can be exponential in the search depth. Special cases of BFS are the A* algorithm [26] and Breadth-First
search. For example, the latter never generates a node until all the nodes at shallower levels have been previ-
ously generated, i.e. the nodes are visited level by level and the cost function is the depth of the node in the
tree.

Depth-First Branch-and-Bound starts from the root, and with a global upper bound u of the lowest-cost
solution found so far, it always selects the most recently generated node or the deepest node to be expanded
next. Whenever a new leaf node is reached whose cost is less than u, u is updated with this lower cost. When-
ever a new internal node is selected for expansion whose cost is larger than u, it is pruned, since all descendents
of such internal node must have costs at least as large as their ancestors. In order to find good candidate nodes

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2211
quickly, the new generated child nodes should be searched in an increasing order of their costs, and it is called
node-ordering. Moreover, DFBnB uses space that is only linear in the search depth and it is very easy to imple-
ment using the recursion, which is available in most of the programming languages. Iterative-Deepening [38]
can be considered a variant of DFBnB, which performs a series of DFBnB iterations using global variables for
pruning.

Recursive Best-First Search [22] is a Best-First Search that runs in space that is linear (using the recursion)
with respect to the maximum search depth (i.e. RBFS is a linear-space best-first search algorithm). It works by
maintaining on the recursion stack the complete path to the current node being expanded, as well as all imme-
diate siblings of nodes on that path, along with the cost of the best node in the subtree expanded below each
sibling. Whenever the cost of the current node exceeds some other node in the previously expanded portion of
the tree, the algorithm backs-up to their deepest common ancestor, and continues the search down the new
path. The algorithm maintains a separate local pruning threshold for each subtree diverging from the current
search path.

Fig. 1 contains the algorithmic descriptions in pseudo-code of BFS (1.a), DFBnB (1.b) and RBFS (1.c);
where root represents the root node and cost(n) is the cost of a node n. For BFS algorithm, the global_list

can be implemented as a priority queue sorted by node cost values and it is used to maintain the nodes that
have been generated but not expanded yet and it starts with BFS (root). DFBnB algorithm uses node-ordering

and, it starts with DFBnB (root) and initially u 1 (u is a global upper bound of the lowest cost values
found so far, and it is used to prune branches whose cost is greater than or equal to this bound). Finally,
RBFS algorithm starts with RBFSðroot; costðrootÞ;1Þ and Fb[n] is the stored value of node n and u is a local
upper bound. Fb[i] denotes the current stored value of the ith child in the sorted order of children, and the
stored value of a node n(Fb[n]) is a lower bound of the static values (the static value of a node n corresponds
Fig. 1. Search algorithms.

2212 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
to its cost, cost(n)) of its children, and it should be set to the maximum of their parent’s stored values and its
own static value. The stored value is passed down to its children and it is used to control the node re-expan-
sion, following a best-first order. The u parameter for RBFS is a local cost threshold of the subtree below a
given node, and it is used to stop the exploration of the subtree below such a node.

If we compare these three search algorithms, we can observe that there are two major differences between
BFS and DFBnB. One is that DFBnB runs in space linear in the search depth, whereas BFS can require space
exponential in the search depth (i.e. the main drawback of BFS is its memory requirements, and in some appli-
cations it is severely space-limited). The other difference is that DFBnB may expand nodes whose costs are
larger than the optimal cost, whereas BFS does not. On the other hand, as DFBnB, the space complexity
of RBFS is linear in the search depth; and as BFS, RBFS expands nodes in best-first order, but it suffers from
node re-expansion overhead. Fig. 2 illustrates how the search algorithms (BFS, DFBnB and RBFS) work on a
binary tree (the numbers in the nodes are the costs) in order to find the optimal goal (node 4), with the num-
bers next to the nodes represent the order in which the nodes are visited [38].

DFBnB and RBFS maintain in memory the current search path using the recursion, and thus their space
complexity is linear in the search depth. For example, DFBnB traverses as far as possible along each branch (if
the pruning condition is not satisfied) before backtracking. We can also observe the node re-expansion over-
head for RBFS, when the nodes 1 and 2 are visited twice (node 1 (2,4) and node 2 (3,8)). For the interested
reader, in [38], the complete trace of the RBFS algorithm for this binary tree is thoroughly described. BFS
maintains the expanded tree partially in main memory (global_list) and each cycle expands the node of min-
imum cost, and thus, in the worst case, BFS can require space (amount of main memory) that can be expo-
nential in the search depth. For example, if depth = 4, the maximum size of global_list before reaching the
optimal goal is 4, 2depth�2 ([0,1,2,3,5,4,6] since the nodes 0, 1 and 2 have been deleted before its expansion
during the execution of the algorithm).

2.2. Distance-based queries using R-trees

Numerous algorithms exist for answering DBQs in spatial databases, but most these algorithms are focused
in the KNNQ and KCPQ over spatial access methods as R-trees, from the incremental [20,19,33] or non-incre-
mental [30,15,16] point of view. The first KNN search algorithm for R-trees was proposed in [30], and it tra-
verses the R-tree in a DFBnB manner improved with node-ordering, accessing pages in an order induced by
the hierarchy of the index structure. Assume that we want to search the nearest neighbor ðK ¼ 1Þ of point
query q in the R-tree R. Starting from the root, all entries are sorted according to their MinDist [30] values
from q, and the entry with the smallest MinDist values is visited first. The process is repeated recursively until
the leaf level, where a potential nearest neighbor is found. During the backtracking phase to the upper levels,
the algorithm visits entries whose MinDist values are smaller than or equal to the distance of the nearest neigh-
bor found so far. This algorithm was enhanced in [10], proving that any page can be pruned by using Min-
MaxDist [30] distance function (between a point and an MBR), since its computation can cause an
additional overhead. The performance of this algorithm was shown to be suboptimal in [28] and the worst-
case space complexity of this algorithm is O(h * Cmax), where Cmax is the maximum branching factor of
the R-tree and h is its height.
32

10

6

3

8 7 9 7 64 9

5 4 6

1 2

0

6

3

8 7 9 7 64 9

5 4 6

1 2

0

6

3

8 7 9 7 64 9

5 4 6

1 2

 Best-First Search Depth-First Branch-and-Bound Recursive Best-First Search

4 7

5

1

86

2

3

4 5

6

7 8

9

10

11 6 7

1

2,4 3, 8

5 9

10

Fig. 2. The order of visited nodes in the search algorithms: (a) BFS, (b) DFBnB and (c) RBFS.

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2213
In some applications, the number of desired neighbors (K) is fixed in advance, but in other applications this
number is unknown. In the last case is when the incremental nearest neighbor algorithms (ranking queries) [20]
are useful. The way to implement this kind of algorithm is using a BFS algorithm, keeping a minimum binary
heap [13], global_list, with the entries of the nodes visited so far (internal and leaf nodes). Therefore, the nodes
of the R-tree are accessed in the order of increasing distance to the query point. This algorithm was proved to
be I/O optimal in [2], since it only visits the necessary nodes for obtaining the desired result. Moreover, the
worst-case space complexity (maximum size of global_list) of this algorithm is O(n), where n is the total num-
ber of elements in the R-tree [3]. A version of KNNQ following Breadth-First search, which can be considered
a special case of BFS, for multi-user environments can be found in [9].

qDRQ is a special case of Region Query [17], which permits search regions to have arbitrary orientations
and shape. In our case, the region query is defined by a point query and an interval of distances, generating
different circular shapes (e.g. if q1 ¼ 0 and q2 > 0, then the region is a circle; if q1 ¼ q2 6¼ 0, then the region is a
circumference; if q1 ¼ q2 ¼ 0, then the spatial objects intersect or they can be identical; etc.). qDRQ can be
considered a Buffer Query [32] over one spatial dataset, since a buffer, in the spatial database terminology,
refers to a region constructed outward from an isolated spatial object (e.g. point query) to a specific distance
[11]. This kind of DBQ has not been studied in-depth using R-trees for spatial databases, since the researchers
have paid more attention to the Window Query (the region query is a rectangle, where the faces are parallel to
the coordinate axes) [18,1]. For high-dimensional data spaces using R-tree-like index structures, q-Similarity

Query is reviewed in [3], adapting the KNNQ algorithms of [30,20]. The q-Similarity Query [3] finds all high-
dimensional points (high-dimensional feature vectors), which distance from a high-dimensional query point is
below (or equal to) a given distance threshold q.

For the KCPQ in spatial databases using R-trees, [19,33,15,16,29] are the most representative references in
the literature. In [15,16] non-incremental recursive (DFBnB) and non-recursive (BFS) algorithms were pre-
sented for solving the KCPQ in spatial databases. Recently, in [29], the KCPQ with spatial constraints is
addressed from the non-incremental processing point of view. The main issue of the non-incremental variant
is to separate the treatment of the terminal candidates (the elements of the leaf nodes) from the rest of the
candidates (internal nodes). The worst-case space complexity of the recursive algorithm (DFBnB) is
Oððh1 � Cmax1Þ þ ðh2 � Cmax2ÞÞ, where Cmax1 and Cmax2 are the maximum branching factor of each R-tree
(R1 and R2) involving in the query and, h1 and h2 are their respective heights.

In [19,33], incremental and non-recursive algorithms based on Best-First Search (BFS) and additional pri-
ority queues using R-trees for distance join queries were presented. The application of BFS for KCPQ is sim-
ilar to the case of KNNQ. The techniques proposed in [19] were enhanced in [33], using the plane-sweep during
the combination of the entries of the nodes and an estimation of the distance value of the Kth closest pair in
order to avoid unnecessary computation of MBRs distances and insertion of the main minimum binary heap
(global_list). The strong point of this incremental approach is that, when K is unknown in advance, the user
stops when he/she is satisfied by the result. On the other hand, when the number of elements in the result
grows, the amount of the required resources, to perform the query, increases as well. Thus, incremental algo-
rithms are competitive when a small quantity of elements in the result (K) is needed, while it is penalized if
large part or the entire join result is desired [19]. The worst-case space complexity of this algorithm, which
follows a Best-Fist search, is O(n * m), where n and m are the total number of elements in each of the two
R-trees.

qDJQ is a generalization of the Buffer Query [8] (it is characterized by two spatial datasets and a distance
threshold), which permits search pairs of spatial objects from the two input datasets that are within distance q
from each other. In our case, the distance threshold is a range of distances defined by an interval of distances
½q1; q2� (e.g. if q1 ¼ 0 and q2 > 0, then we have the definition of Buffer Query and if q1 ¼ q2 ¼ 0, then we have
the spatial intersection join, which retrieves all different intersecting spatial object pairs from two distinct spa-
tial datasets [6]). This query is also related to the Similarity Join [24,37], where the problem of deciding if two
objects are similar is reduced to the problem of determining if two high-dimensional points are within a certain
distance of each other. In [8], the Buffer Query is solved for non-point (lines and regions) spatial datasets using
R-trees, where efficient algorithms for computing the minimum distance for lines and regions, pruning tech-
niques for filtering in a Depth-First Branch-and-Bound algorithm (performance comparisons with other
search algorithms are not included), and extensive experimental results are presented.

Table 1
Search algorithms and DBQs using R-trees in spatial databases

KNNQ qDRQ KCPQ qDRJ

DFBnB [30,10] · [15,16] [8]
RBFS · · · ·
BFS [20,31] · [19,33] ·

2214 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
Other complex DBQs using R-trees have been studied in the literature of the spatial databases, as Iceberg

Distance Join and K Nearest Neighbors Join queries. In [34], the Iceberg Distance Join Query is studied for
hash-based algorithms and index-based methods (R-trees). This DBQ involves two spatial datasets, a distance
threshold q and a cardinality threshold K ðK P 1Þ. The answer is a set of pairs of spatial objects from the two
input datasets that are within distance q from each other, provided that the first spatial object appears at least
K times in the join result. On the other hand, in [4], the K Nearest Neighbors Join Query is studied for R-tree-
based data structures. This DBQ involves two spatial datasets and a cardinality threshold K ðK P 1Þ. The
answer is a set of pairs of spatial objects from the two input datasets that includes, for each of the spatial
objects of the first dataset, the pairs formed with each of its K nearest neighbors in the second dataset.

2.3. Motivation and contributions

BFS and DFBnB searches have been widely studied on DBQs using R-trees in spatial databases. BFS typ-
ically requires space that can be exponential in the heights of the R-trees (in the worst-case), and it expands the
minimum number of nodes in order to find the optimal solution. DFBnB expands some nodes which costs can
be larger than the optimal cost, however it runs in linear space. In Table 1, we compare the most employed
search algorithms (DFBnB, RBFS and BFS) adapted to the most representative DBQs (KNNQ, qDRQ,
KCPQ and qDJQ) using R-trees in spatial databases, and the most important conclusion from this compar-
ison is that RBFS has not been investigated yet as search algorithm in order to report solutions to DBQs using
R-trees.

RBFS expands nodes in best-first order and runs in linear space, although it can suffer from node re-expan-
sion overhead, since the recursion is used to avoid additional data structures (e.g. priority queues). Therefore,
the main contribution of this paper is to design new RBFS algorithms for DBQs in non-incremental way over
R-trees, and compare them experimentally using real and synthetic (uniform) datasets with respect to the other
ones (BFS and DFBnB), taking into account several execution parameters. Adapting these RBFS algorithms
to others DBQs (as Iceberg Distance Join, K Nearest Neighbors Join, etc.) using R-trees is a subject for future
study.

3. Recursive Best-First search algorithms for DBQs using R-trees

In this section, a brief description of R-trees is presented, pointing out the main characteristics of the R*-
tree. Moreover, distance functions between MBRs and pruning mechanisms, which will be used in algorithms
for answering the DBQ are reviewed. Based on distance functions between MBRs, pruning mechanisms and
the RBFS traversal policy, we design search algorithms for processing DBQ using R-trees in non-incremental
way. The non-incremental processing on R-trees can be achieved by separating the treatment of the leaf and
the internal nodes according to the particular constraint of a DBQ.

3.1. R-trees

An R-tree [18] is a hierarchical, height balanced multidimensional data structure, designed to be used in
secondary storage and it is a generalization of B-trees [12] for multidimensional data spaces. The R-trees
are considered as excellent choices for indexing various kinds of spatial data (points, rectangles, line-segments,
polygons, etc.) and have been adopted in known commercial systems (e.g. Informix [7], Oracle [27], etc.). They
are used for the dynamic organization of a set of d-dimensional geometric objects represented by their Min-

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2215
imum Bounding d-dimensional hyper-Rectangles (MBRs). These MBRs are characterized by min and max

points of hyper-rectangles with faces parallel to the coordinate axis. Using the MBR instead of the exact geo-
metrical representation of the object, its representational complexity is reduced to two points where the most
important features of the spatial object (position and extension) are maintained. Consequently, the MBR is an
approximation widely employed, and the R-trees belong to the category of data-driven access methods, since
their structure adapts itself to the MBRs distribution in the space (i.e. the partitioning adapts to the object
distribution in the embedding space).

The rules obeyed by the R-tree are as follows. (1) Leaves reside on the same level. (2) Each leaf node con-
tains entries of the form (MBR, Oid), such that MBR is the minimum bounding rectangle that encloses the
spatial object determined by the identifier Oid ð6¼ nullÞ and stored in a separate file on disk (if Oid = null,
the geometry of the spatial object is simple (e.g. points or MBRs) and it is stored directly in the R-tree leaf
nodes). (3) Every other node (internal) contains entries of the form (MBR, Addr), where Addr is the address
of the child node (internal or leaf node) and MBR is the minimum bounding rectangle that encloses MBRs of
all entries in that child node. (4) An R-tree of class (Cmin,Cmax) has the characteristic that every node, except
possibly for the root, contains between Cmin and Cmax entries, where Cmin 6 dCmax/2e (Cmax and Cmin are
also called maximum and minimum branching factors or fan-out). (5) The root contains at least two entries, if
it is not a leaf. Fig. 3 depicts some points (pi) and MBRs (Mi) on the left and the corresponding R-tree (2,3) on
the right, where the R-tree nodes can be implemented as disk pages. Dotted lines denote the bounding rect-
angles of the subtrees that are rooted in inner nodes.

Like other spatial tree-like index structures, an R-tree partitions the multidimensional space by grouping
objects in a hierarchical manner. A subspace occupied by a tree node in an R-tree is always contained in
the subspace of its parent node, i.e. the MBR enclosure property. According to this property, an MBR of
an R-tree node (at any level, except at the leaf level) always encloses the MBRs of its descendent R-tree nodes.
This property of spatial containment between MBRs stored in R-tree nodes is commonly used by spatial join
as well as DBQ. Another important property of the R-trees that store spatial objects in a spatial database is
the MBR face property [30]. This property says that every face of any MBR of an R-tree node (at any level)
touches at least one point of some spatial object in the spatial database. DBQ algorithms mainly use this last
property.

Many variations of R-trees have appeared in the literature, a recent monograph about R-trees (theory and
applications) has been published in [25]. One of the most popular and efficient R-tree variation is the R*-tree
[1]. The R*-tree added two major enhancements to the R-tree, when a node overflow is caused. First, rather
than just considering the area, the node-splitting algorithm in R*-tree also minimized the perimeter and overlap
enlargement of the minimum bounding rectangles. Minimizing the overlap tends to reduce the number of sub-
trees to follow for search operations. Second, R*-tree introduced the notion of forced reinsertion to make the
shape of the tree less dependent to the order of insertions. When a node becomes overflowed, it is not split
immediately, but a portion of entries of the node is reinserted from the top of the tree. The reinsertion provides
two important improvements: (1) it may reduce the number of splits needed and, (2) it is a technique for
dynamically reorganizing the tree. With these two enhancements, the R*-tree generally outperforms R-tree
and it is commonly accepted that the R*-tree is one of the most efficient R-tree variants. In this paper, we
choose R*-trees to perform our experimental study.
X

Y

(0, 0)

M1 M2

M3

M3 M4 M5 M6 M7

p1 p3 p11 p10 p12p2 p4 p5 p6 p7 p8 p9

M4

*p2M1

* p4

* p3

p1

*

p6

*

* p7

*p5
M5

M6
* p9

p8

*

*p11 * p10

* p12
M7

M2

*q

Fig. 3. An example of an R-tree from a set of 2-dimensional points.

2216 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
3.2. Distance function and pruning mechanism

Usually, in the R-tree structure, we have one type of element: MBRs, although if the geometric description of
the spatial objects is simple (e.g. points or MBRs) they can store directly on the leaf nodes, instead of their
MBRs. In the general case, when we consider complex spatial objects, the exact geometry of the spatial objects
is stored in a separate file on disk, whereas the MBRs of such spatial objects are store in the leaf nodes of the R-
tree. Thus, computing the distance between MBRs is much less expensive than computing the distance between
spatial objects. Moreover, when a R-tree leaf node is visited by a DBQ algorithm, we must distinguish if Oid =
null (computing distance between points or MBRs) or Oid 5 null (computing distances between spatial objects).

If we assume that the spatial datasets are indexed on any spatial tree-like structure belonging to the R-tree
family, then the main objective while answering these types of queries is to reduce the search space. In [15,16],
a generalization of the function that calculates the minimum distance between points and MBRs (MinDist)
was presented. We can apply this distance function to pairs of any kind of elements (MBRs or points) stored
in R-trees during the processing of algorithms. MinDist(M1,M2) calculates the minimum distance between two
MBRs M1 and M2. If any of the two (both) MBRs degenerates (degenerate) to a point (two points), then we
obtain the minimum distance between a point and an MBR [30] (between two points, dp).

Definition (MinDist(M1;M2Þ). Given two MBRs M1 ¼ ða; bÞ and M2 ¼ ðc; dÞ, in Ed,

M1 ¼ ða; bÞ, where a ¼ ða1; a2; . . . ; adÞ and b ¼ ðb1; b2; . . . ; bdÞ such that ai 6 bi 81 6 i 6 d,
M2 ¼ ðc; dÞ, where c ¼ ðc1; c2; . . . ; cdÞ and d ¼ ðd1; d2; . . . ; ddÞ such that ci 6 di 81 6 i 6 d,

we define MinDist(M1,M2) as follows:
MinDistðM1;M2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXd

i¼1

l2
i

vuut ; such that li ¼
ci � bi; if ci > bi

ai � di; if ai > di

0; otherwise

8><
>:
The most representative properties of MinDist distance function with respect to KCPQ and qDJQ (for
KNNQ and qDRQ are similar, taking into account that one MBR corresponds to the query point [30]) are
the following [16]:

• MinDist(M1,M2) serves as lower bound function of the Euclidean distance from the K closest pairs of spatial
objects enclosed by the MBRs M1 and M2 (lower-bounding property). It is an important property between
MinDist(M1,M2) and the distance of two spatial objects O1 and O2, which is the basis for the pruning mech-
anism. It says, given two MBRs M1 and M2 in Ed, enclosing two set of spatial objects
SO1 ¼ fO1i : 1 6 i 6j SO1 jg and SO2 ¼ fO2j : 1 6 j 6j SO2 jg, respectively. For all pair of spatial objects
ðO1i;O2jÞ belonging to SO1 � SO2 : MinDistðM1;M2Þ 6 oðO1i;O2jÞ. oðO1;O2Þ is the minimum distance
between the two spatial objects O1 and O2, defined as
oðO1;O2Þ ¼ min
f12F ðO1Þ;f22F ðO2Þ

min
p12f1;p22f2

ðdpðp1; p2ÞÞ
� �
where F ðO1Þ and F ðO2Þ denote the set of faces of the spatial objects O1 and O2 in Ed, respectively. More-
over, f1 and f2 are instances of the sets of faces F ðO1Þ and F ðO2Þ.

• MinDist is monotonically non-decreasing with the R-tree heights. That is, given two MBRs M3 and M4,
descendents of M1 and M2, respectively; then MinDistðM3;M4Þ is always larger than or equal to
MinDistðM1;M2Þ, i.e. MinDistðM3;M4ÞP MinDistðM1;M2Þ. This property comes from the MBR enclosure

property in R-trees, where a subspace occupied by an R-tree node is always contained in the subspace of its
parent node; equivalently, an MBR of an R-tree node (at any level, except at the leaf level) always encloses
the MBRs of its descendent R-tree nodes.

From the previous properties of MinDist distance function, the general pruning mechanism for DBQs over
internal R-tree nodes (or leaf nodes when Oid = null, storing points or MBRs) using DFBnB and BFS tra-

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2217
versal policies is the following: ‘‘if MinDistðM1;M2Þ > z, then the pair of MBRs ðM1;M2Þ will be discarded (M2

can be the query point for KNNQ)’’, where z is the distance value of the Kth nearest neighbor (KNNQ), or the
Kth closest pair (KCPQ) that has been found so far, during the processing of the algorithm. And z is equal to
the maximum distance threshold (q2) for qDRQ or qDJQ.

In a similar way, when the leaf R-tree nodes are processed and Oid 5 null (exact geometry of the spatial
objects is stored in a separate file on disk), apart of the previous pruning mechanism between two MBRs using
MinDist, we have to use the following condition for DBQs: ‘‘if oðO1;O2Þ > z, then the pair of spatial objects
ðO1;O2Þ will be discarded for the final result’’.

3.3. The Recursive Best-First Search algorithm for KNNQ (KNNQ_RBFS)

In this subsection we present a Recursive Best-First Search algorithm in non-incremental way (different
treatment of internal and leaf R-tree nodes) to find the K nearest neighbors spatial objects. It is a linear space
Best-First Search algorithm, since it runs in space that is linear with respect to the height of the R-tree using
the recursion instead of an additional priority queue (global_list) to process internal R-tree nodes and visits the
nodes in best-first order.

In order to design algorithms for processing KNNQ in a non-incremental way (K must be fixed in advance),
an extra data structure that holds the K nearest neighbors is needed. This data structure is organized as a max-
imum binary heap [13], called Kheap, and holds spatial objects according to their distances (the K spatial
objects from the query point with the smallest distance processed so far). The spatial object with the largest
distance resides on top of the Kheap (the root), and we will prune the unnecessary subtrees of the R-tree using
this distance value. Initially, the Kheap is empty and the distance of all elements inside this data structure is
infinity. The spatial objects discovered at the leaf level are inserted in the Kheap until it gets full. Then, when a
new spatial object is discovered at the leaf level, if its distance is smaller than the top of the Kheap, then the
root is deleted and this new spatial object is inserted in the Kheap (updating this data structure).

In general, our Recursive Best-First algorithm for KNNQ using R-trees extends the RBFS algorithm pro-
posed in [22] and illustrated in Fig. 1c, using MinDist as cost function and a pruning mechanism similar to the
general pruning strategy (DFBnB and BFS) for DBQs over R-tree nodes. This algorithm uses a local upper
bound (l, local distance threshold of the subtree below a given MBR, which is mainly used to stop the explo-
ration of such a subtree) for each recursive call over internal R-tree nodes. Therefore, the main idea of this
algorithm for KNNQ is to traverse the subtree below a given MBR as long as it contains MBRs whose dis-
tance values (MinDist) are smaller than or equal to the local upper bound (l), and at this point the algorithm
returns the minimum distance value among all MBRs located in the traversed subtree. This distance value is
stored for each MBR and serves also as an indicator if the subtree below the MBR has been already traversed.
In this way, the essential information of the quality of the subtree is preserved for possible subsequent revisits.
And thus, the algorithm permits to search already traversed subtrees in depth-first manner, in order to create a
sequence of MBRs following a best-first order based on MinDist values.

The pseudo-code of the Recursive Best-First Search algorithm for KNNQ is shown in Fig. 4, so-called
KNNQ_RBFS, where the spatial objects can be stored in the leaves of the R-tree with height h or external
to it (using the MBR stored in the leaf nodes). To achieve the general behavior of RBFS for KNNQ using
R-trees, besides the static distance value, MinDist(MBR,q), for each MBR on internal R-tree nodes,
KNNQ_RBFS also maintains a stored distance value for each MBR, Fb(MBR,q). The stored value of an
MBR is just a lower bound on the MinDist values of its children (i.e. it is a backed-up distance value), and
it also serves as an indicator if the subtree below the MBR has been already traversed. Fb(MBR,q) is initial-
ized with MinDist(MBR,q) when the MBR is considered at the first time, but when the algorithm traverses
completely the subtree below the MBR up to the local upper bound and returns, this Fb value associated
to the MBR is updated with the minimum distance value between the items in the subtree. In order to traverse
the subtree below a given MBR, the local upper bound must be at least as large as its stored distance value (in
this case, the algorithm maintains a local minimum binary heap associated to the current internal R-tree nodes
(FbHeap, which item structure is hFb,MinDist,NodeAddressi) in the recursion stack, organized by their MBR
Fb values). The recursive call associated to a given MBR will not return until the stored distances values of all
items in the subtree below it exceed its local upper bound, and its new stored distance value will be updated to

Fig. 4. Pseudo-code of the Recursive Best-First Search algorithm to find the K nearest neighbors from a queryPoint using an R-tree,
KNNQ_RBFS.

2218 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
the minimum of these distance values. Thus, for a given MBR that have been previously expanded, its stored
distance value (Fb) will be larger than the static one (MinDist). In this way, the essential information of the
subtree of a given MBR is preserved for possible subsequent revisits, i.e. the MBR (according to the Fb value)
can be considered in the future. The updated Fb value of a given MBR serves also as an indicator if the MBR
have been already traversed. If Fb(MBR,q) > MinDist(MBR,q), then the MBR have been traversed previously
and the Fb value for its descendents should be set to the maximum of the stored distance value of the asso-
ciated MBR in its node ancestor (MBR_ancestor) and its own static value (i.e. the stored distance value of a

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2219
given MBR is a lower bound of the stored distance values of its descendents) as in line 07 in Fig. 4.
FbðMi; qÞ ¼ maxfFbðMBR ancestori; qÞ;MinDistðMi; qÞg, such that Mi belongs to the current internal R-tree
node and 1 6 i 6 numOfEntries. In this way, the algorithm allows to search already traversed subtrees recur-
sively following best-first order, without unnecessary backtrackings. On the other hand, the new value of
the local upper bound of a given MBR (before the recursive call) is obtained from the minimum of the local
upper bound of the associated MBR in its node ancestor (MBR_ancestor) and the minimum stored distance
value of the remainder MBRs in the current internal R-tree node (infinity, if there is no more MBRs in
such internal node) as in line 23 in Fig. 4. lðMiÞ ¼ minflðMBR ancestoriÞ; FbðMj; qÞg, such that Mi and Mj

belong to the current internal R-tree node, 1 6 i; j 6 numOfEntries and i 6¼ j. The initial call is
KNNQ RBFSðq;KNearestObjects; rootNodeAddress;1;1;1; h� 1Þ. The level of the R-tree root is h � 1 and
0 for the leaves. An important condition of the algorithm is to avoid the revisit (re-read) of leaf R-tree nodes
(line 10 in Fig. 4), since it must not consider leaf nodes (terminal nodes) that have been traversed previously
ðFbðMi; qÞ > MinDistðMi; qÞÞ at level immediately over the leaves (level = 1). The KNNQ_RBFS algorithm
searches the K nearest neighbors (of spatial objects indexed by an R-tree with height h and maximum fan-
out Cmax) from a query point q (queryPoint) in best-first order and the space complexity is O(h * Cmax)
in the worst case. The proofs for its correctness and complexity (space and time) are very similar to the original
RBFS, which can be found in [22].

If we compare the search algorithm in Fig. 1c (RBFS) with respect to KNNQ_RBFS in Fig. 4, we can
observe that the former is equivalent to the internal R-tree node treatment in the latter. For instance, lines
4–8 in RBFS correspond to lines 4–14 in KNNQ_RBFS, where the sorting of Fb[i] is implicit in the processing
of the minimum binary heap (FbHeap). Moreover, the while loop for the recursive calls in lines 9–11 of RBFS
(to visit new nodes o previously visited nodes in order to follow best-first order using the recursion) are equiv-
alent to lines 16–27 in KNNQ_RBFS. Finally, the return line 12 in RBFS corresponds to the line 46 in
KNNQ_RBFS, taking into account the internal and leaf R-tree nodes treatment.

Note that, due to ties of distances, the result of the KNNQ may not be a unique ordered sequence for a
specific point dataset (lines 34 and 41 in Fig. 4). The aim of the proposed algorithm is to find one of the
possible instances, although it would be straightforward to obtain all of them.

We can also deduce from the previous recursive algorithm that the pruning mechanism for RBFS is differ-
ent to the one of DFBnB and BFS for internal R-tree nodes. It is based on Fb values instead of MinDist val-
ues, and it is a composed condition (line 18 in Fig. 4): ‘‘if minfFbðM1;M2Þg > l or minfFbðM1;M2ÞgP z, then

the pair of MBRs ðM1;M2Þ will be discarded (M2 can be the query point for KNNQ)’’, where l is the local upper
bound and z is the distance value of the Kth nearest neighbor that has been found so far (pruning distance).
On the other hand, for leaf R-tree nodes the pruning mechanism is based on MinDist (Oid = null) or D dis-
tance functions (Oid 5 null) as for BFS and DFBnB (lines from 30 to 45 in Fig. 4).

As an example, suppose that we want to find the three nearest neighbors ðK ¼ 3Þ to query point q in the
R-tree given in Fig. 3, where the spatial objects are points which are stored in the leaf nodes with the follow-
ing coordinates: p1 ¼ ð2; 8Þ; p2 ¼ ð6; 27Þ; p3 ¼ ð10; 14Þ; p4 ¼ ð14; 21Þ; p5 ¼ ð17; 37Þ; p6 ¼ ð17; 28Þ; p7 ¼ ð26; 41Þ;
p8 ¼ ð30; 26Þ; p9 ¼ ð36; 38Þ; p10 ¼ ð46; 17Þ; p11 ¼ ð37; 18Þ; p12 ¼ ð46; 12Þ, and the query point q ¼ ð25; 20Þ.
Moreover, the MBRs ðMi ¼ ½ðminx;minyÞ; ðmaxx;maxyÞ�Þ of the internal R-tree nodes correspond to
M1 ¼ ½ð2; 8Þ; ð14; 27Þ�;M2 ¼ ½ð17; 12Þ; ð46; 41Þ�;M3 ¼ ½ð2; 8Þ; ð10; 14Þ�;M4 ¼ ½ð6; 21Þ; ð14; 27Þ�;M5 ¼ ½ð17; 28Þ;
ð26; 41Þ�;M6 ¼ ½ð30; 26Þ; ð36; 38Þ� and M7 ¼ ½ð37; 12Þ; ð46; 18Þ�. We show the steps of the algorithm before
each recursive call KNNQ_RBFS with the most representative values associated to the current MBR in
internal R-tree nodes ðMBR;Fb;MinDist; l0; lÞ, and the content of the Kheap (KNearestObjects)
hðpi; distðpi; qÞÞ; ðpj; distðpj; qÞÞ; ðpk; distðpk; qÞÞi, which is empty at the beginning hð�;1Þ; ð�;1Þ; ð�;1Þi.

ðM2; 0:00000; 0:00000; 11:00000;1Þ.
ðM6; 7:81025; 7:81025; 8:00000; 11:00000Þ.
hð�;1Þ; ðp9; 21:09502Þ; ðp8; 7:81024Þi; z ¼ 1.
(M5, 8.00000, 8.00000, 11.00000, 11.00000).
hðp5; 18:78829Þ; ðp6; 11:31370Þ; ðp8; 7:81024Þi; z ¼ 18:78829.
ðM1; 11:00000; 11:00000; 12:16553;1Þ.
(M4, 11.04536, 11.04536, 12.16553, 12.16553).

2220 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
hðp6; 11:31370Þ; ðp4; 11:04536Þ; ðp8; 7:81024Þi; z ¼ 11:31370.
The algorithm terminates because the updated Fb value after the recursive call is equal to z in line 18 in
Fig. 4 (if condition is false), Fb ¼ 11:31370 ¼ z. And the number of nodes accessed is 6.

If we use the extension of the BFS algorithm to solve the KNNQ using R-trees (KNNQ_BFS in Fig. 5) to
find the three nearest neighbors ðK ¼ 3Þ in non-incremental way (the global_list is implemented as a minimum
binary heap (GlobalMinDistHeap) and represented its content by square brackets [. . .]), it executes the follow-
ing steps:

Insert M1 and M2: ½ðM2; 0:00000Þ; ðM1; 11:00000Þ�; z ¼ 1.
Extract ðM2; 0:00000Þ : ½ðM1; 11:00000Þ�; z ¼ 1.
Insert M5;M6 and M7: ½ðM6; 7:81025Þ; ðM5; 8:00000Þ; ðM1; 11:00000Þ; ðM7; 12:16553Þ�; z ¼ 1.
Extract ðM6; 7:81025Þ : ½ðM5; 8:00000Þ; ðM1; 11:00000Þ; ðM7; 12:16553Þ�; z ¼ 1.
hð�;1Þ; ðp9; 21:09502Þ; ðp8; 7:81024Þi; z ¼ 1.
Extract ðM5; 8:00000Þ : ½ðM1; 11:00000Þ; ðM7; 12:16553Þ�; z ¼ 1.
hðp5; 18:78829Þ; ðp6; 11:31370Þ; ðp8; 7:81024Þi; z ¼ 18:78829.
Extract ðM1; 11:00000Þ : ½ðM7; 12:16553Þ�; z ¼ 18:78829.
Insert M3 and M4: ½ðM4; 11:04536Þ; ðM7; 12:16553Þ; ðM3; 16:15549Þ�; z ¼ 18:78829.
Extract ðM4; 11:04536Þ : ½ðM7; 12:16553Þ; ðM3; 16:15549Þ�; z ¼ 18:78829.
hðp6; 11:31370Þ; ðp4; 11:04536Þ; ðp8; 7:81024Þi; z ¼ 11:31370.
The algorithm terminates because, MinDistðM7; qÞ ¼ 12:16553 > z ¼ 11:31370. And the number of nodes
accessed is 6.

Finally, the extension of the DFBnB algorithm to solve the KNNQ using R-trees (KNNQ_DFBnB) to find
the three nearest neighbors ðK ¼ 3Þ in non-incremental way is illustrated in Fig. 6. We show the steps of the
algorithm before each recursive call KNNQ_DFBnB with the most representative values associated to the cur-
rent MBR in internal R-tree nodes and z (MBR, MinDist, z), and the content of the Kheap (KNearestObjects)
hðpi; distðpi; qÞÞ; ðpj; distðpj; qÞÞ; ðpk; distðpk; qÞÞi, which is empty at the beginning hð�;1Þ; ð�;1Þ; ð�;1Þi.
Fig. 5. Pseudo-code of the Best-First Search algorithm to find the K nearest neighbors from a queryPoint using an R-tree, KNNQ_BFS.

Fig. 6. Pseudo-code of the Depth-First Branch-and-Bound Search algorithm to find the K nearest neighbors from a queryPoint using an
R-tree, KNNQ_DFBnB.

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2221
ðM2; 0:00000;1Þ.
ðM6; 7:81025;1Þ.
hð�;1Þ; ðp9; 21:09502Þ; ðp8; 7:81024Þi; z ¼ 1.
ðM5; 8:00000;1Þ.
hðp5; 18:78829Þ; ðp6; 11:31370Þ; ðp8; 7:81024Þi; z ¼ 18:78829.
(M7, 12.16553, 18.78829).
hðp11; 12:16553Þ; ðp6; 11:31370Þ; ðp8; 7:81024Þi; z ¼ 12:16553.
(M1, 11.00000, 12.16553).
(M4, 11.04536, 12.16553).
hðp6; 11:31370Þ; ðp4; 11:04536Þ; ðp8; 7:81024Þi; z ¼ 11:31370.
The algorithm terminates because, MinDistðM3; qÞ ¼ 16:15549 > z ¼ 11:31370. And the number of nodes
accessed is 7. And in this example, we can observe the main drawback of the DFBnB search algorithm,
when subtrees are traversed where no optimal solutions are located (e.g. subtree below M7), and hence it
needs additional node accesses before finding the desired result.

From the previous steps of KNNQ_RBFS executions (algorithm in Fig. 4), we can notice that the Fb values
(in bold style) before each recursive call (after each item extraction from FbHeap when Fb = MinDist (the
MBR is considered at the first time), satisfying the pruning condition) are the same as MinDist values (also
in bold style) after each item extraction from global_list in the BFS algorithm. It means that both follow a
best-first order, although KNNQ_RBFS can suffer from internal R-tree node re-expansion overhead when
the value of K increases, i.e. some internal R-tree nodes need to be read (visited) more than once. For instance,
if we consider the previous example and we want to find the four nearest neighbors ðK ¼ 4Þ in non-incremental
way using KNNQ_RBFS algorithm, the execution follows the next steps:

ðM2; 0:00000; 0:00000; 11:00000;1Þ.
(M6, 7.81025, 7.81025, 8.00000, 11.00000).
hð�;1Þ; ð�;1Þ; ðp9; 21:09502Þ; ðp8; 7:81024Þi; z ¼ 1.
(M5, 8.00000, 8.00000, 11.00000, 11.00000).
hðp7; 21:02380Þ; ðp5; 18:78829Þ; ðp6; 11:31370Þ; ðp8; 7:81024Þi; z ¼ 21:02380.
ðM1; 11:00000; 11:00000; 12:16553;1Þ.
(M4, 11.04536, 11.04536, 12.16553, 12.16553).
hðp5; 18:78829Þ; ðp6; 11:31370Þ; ðp4; 11:04536Þ; ðp8; 7:81024Þi; z ¼ 18:78829.
ðM2; 12:16552; 0:00000; 16:15549;1Þ. Internal R-tree Node Re-expansion Overhead.

2222 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
(M7, 12.16552, 12.16552, 16.15549, 16.15549).
hðp11; 12:16552Þ; ðp6; 11:31370Þ; ðp4; 11:04536Þ; ðp8; 7:81024Þi; z ¼ 12:16552.
The algorithm terminates because the updated Fb value after the recursive call is equal to z in line 18 in
Fig. 4 (if condition is false), Fb ¼ 12:16552 ¼ z. And the number of nodes accessed is 8 (the internal R-tree
node pointed by M2 is read twice). For the interested reader is not so difficult to detect that for BFS the
number of nodes accessed is only 7, because we have only to extract M7 from the global_list and read
the pointed leaf R-tree node.

Finally, if we want to find the K nearest neighbors from a query spatial object (queryObject) instead of a
query point (queryPoint) as in the algorithm of Fig. 4 (similarly for KNNQ_BFS and KNNQ_DFBnB), we
have to introduce in the algorithms the following modifications:

1. Two additional parameters in the KNNQ_RBFS function (similarly for KNNQ_BFS and KNNQ_DFBnB),
instead of queryPoint:
queryObject and MBROfQueryObject.

2. Treatment on internal R-tree nodes (line 05 in Fig. 4, lines 04 and 14 in Fig. 5 and line 05 in Fig. 6):Min-
DistValue = MinDist(node.entries[i].MBR, MBROfQueryObject);

3. Treatment on leaf R-tree nodes (lines 30–44 in Fig. 4, lines 20–34 in Fig. 5and lines 16–30 in Fig. 6):if
(node.entries[i].Oid = null) dist = o(node.entries[i].MBR, queryObject);else dist = o(O1, queryObject);
3.4. The Recursive Best-First Search algorithm for qDRQ (qDRQ_RBFS)

The adaptation of the algorithms for KNNQ to the qDRQ is not so difficult. For the non-incremental pro-
cessing, we have to consider the following modifications:

1. For the treatment of internal R-tree nodes (KNNQ_BFS and KNNQ_DFBnB), the pruning mechanism is:
if MinDistðM ; qÞ > q2, then the MBR M will be discarded. For KNNQ_RBFS, the pruning mechanism is
(line 18 in Fig. 4): if minfFbðM ; qÞg > l or minfFbðM ; qÞgP q2, then the MBR M will be discarded. It
means that for all cases, q2 will be used as pruning distance instead of the distance of Kth nearest neighbor
that has been found so far. Moreover, in the line 10 in Fig. 4 (no revisit condition for leaf R-tree nodes) the
function call KNearestObjects.get_z() must be also replaced by q2.

2. For the treatment of leaf R-tree nodes (for all traversal policies), the spatial object in the distance range
½q1; q2� is selected for the final result (lines 34 and 41 in Fig. 4), using MinDist if Oid = null (points or
MBRs) or D distance functions if Oid 5 null (complex spatial objects).

3. The result of the query must not be ordered (for the three algorithms, KNNQ_BFS, KNNQ_DFBnB and
KNNQ_RBFS). That is, the Kheap is unnecessary (the returned value in line 45 in Fig. 4 is always q2). There-
fore, the data structure that holds the result set is (instead of Kheap) a file of records (resultFile) of two
fields, where the first field will be the distance and the second one will be a pointer to spatial objects in
the spatial dataset (or to R-tree leaf nodes if simple spatial objects (points or MBRs) are stored directly
in the R-tree).

4. If we want to find a set of spatial objects that fall on a distance range ½q1; q2� from a query spatial object
(queryObject) instead of a query point (queryPoint), we have to consider the same three modifications as
for KNNQ_RBFS algorithm. This treatment is the same for the three traversal policies (KNNQ_BFS,
KNNQ_DFBnB and KNNQ_RBFS).

A special case of qDRQ is to consider q1 ¼ 0 and q2 > 0 (i.e. the region (range) is a circle centered in the
query object, see the left chart of Fig. 3), which will be used in the experimental section.

3.5. The Recursive Best-First Search algorithm for KCPQ (KCPQ_RBFS)

The main advantage of the recursive algorithms is that they transform a global problem into smaller local
ones at each tree level (stored in the recursion stack) and that we can apply pruning mechanisms on every sub-

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2223
problem for reducing the search space. Moreover, for improving the I/O and CPU cost of the Recursive Best-
First Search algorithm for KCPQ, two techniques can be used. The first technique aims at reducing the num-
ber of I/O operations: it consists in using a global LRU buffer [15,16]. The second mechanism for improving
the performance aims at reducing the CPU cost by using the distance-based plane-sweep technique [16] to avoid
processing all the possible combinations of pairs of R-tree items from two leaf nodes. For a RBFS algorithm,
we will also apply this technique into internal R-tree nodes, apart of organizing these items as local minimum
binary heap (FbHeap), which item structure is now hFb;MinDist; Fb SD;NodeAddressP ;NodeAddressQi. More-
over, to design the RBFS algorithm for KCPQ in a non-incremental way (K must be fixed in advance) for
R-trees indexing spatial objects, the Kheap holds pairs of spatial objects according to their distances (the K

pairs of spatial objects with the smallest distance processed so far).
In general, the distance-based plane-sweep technique for KCPQ using R-trees [16] consists of sorting the

entries of the two current R-tree nodes, based on the coordinates of one of the corners of the MBRs (e.g. lower
left corner) in increasing order. Afterwards, the dimension for the sweep-line (sweeping dimension) is estab-
lished (e.g. SD = 1 or X-axis), and a perpendicular line to the sweeping dimension is moved from left to right,
discarding pairs of MBRs ðMi;MjÞ if MinDistðMi;Mj; SDÞ > z (note that MinDistðMi;Mj; SDÞ ¼ lSD in the def-
inition of MinDist distance function). In our case, for RBFS and internal R-tree nodes we have to consider an
additional treatment for the sweeping dimension (similar to MinDist and Fb in KNNQ_RBFS). Therefore, we
have also to store FbðMi;Mj; SDÞ of a pair of MBRs ðMi;MjÞ for the sweeping dimension (so-called, Fb_SD),
which represents the minimum distance value on the sweeping dimension among the pairs of MBRs in the
subtrees bellow them, FbðMi;Mj; SDÞ ¼ maxfFbðMBR ancestori;MBR ancestorj; SDÞ;MinDistðMi;Mj; SDÞg.
And, pairs of MBRs ðMi;MjÞ can be discarded if FbðMi;Mj; SDÞ > z.

Fig. 7 describes by steps the non-incremental RBFS algorithm for processing the KCPQ (KCPQ_RBFS)
between two sets of points (P and Q) indexed in two R-trees (RP and RQ) with the same height (z is the dis-
tance value of the Kth closest pair of points found so far; at the beginning z ¼ 1).

As KNNQ_RBFS algorithm, if we want to find the K closest pairs between two sets of spatial objects (or a
set of points and a set of spatial objects), we have to consider in all cases the o distance function for the com-
putation of distances at leaf level, except for the cases (point, point), (point, MBR), (MBR, point) and (MBR,
MBR) that using MinDist distance function is enough. Moreover, when the two R-trees storing the two spatial
datasets have different heights, the algorithms are slightly more complicated. For the recursive algorithms,
KCPQ_RBFS is one of them, there are two approaches for treating different heights: fix-at-leaves and fix-

at-roots [15,16], and one of them can be adopted. As KNNQ_RBFS algorithm and due to ties of distances,
KCPQ_RBFS obtains one of the possible instances of ordered sequences of K different pairs of spatial objects,
although it would be straightforward to report all of them.

For the interested readers, Figs. 8 and 9 describe by steps the non-incremental BFS and DFBnB algorithms,
respectively, for processing the KCPQ (KCPQ_BFS and KCPQ_DFBnB [16]) between two sets of points (P
Fig. 7. Recursive Best-First Search algorithm for KCPQ using R-trees, KCPQ_RBFS.

Fig. 8. Best-First Search algorithm for KCPQ using R-trees, KCPQ_BFS.

Fig. 9. Depth-First Branch-and-Bound Search algorithm for KCPQ, KCPQ_DFBnB.

2224 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
and Q) indexed in two R-trees (RP and RQ) with the same height (z is the distance value of the Kth closest pair
of points found so far; at the beginning z ¼ 1Þ.

3.6. The Recursive Best-First Search algorithm for qDJQ (qDJQ_RBFS)

The adaptation of the algorithms from KCPQ to the qDJQ is very similar to the one from KNNQ to
qDRQ. For the non-incremental processing, we have to consider the following modifications:

1. For the treatment of internal R-tree nodes (KCPQ_BFS and KCPQ_DFBnB), the pruning mechanism is:
if MinDistðM1;M2Þ > q2, then the pair of MBRs ðM1;M2Þ will be discarded. For KCPQ_RBFS, the pruning
mechanism is: if minfFbðM1;M2Þg > l or minfFbðM1;M2ÞgP q2, then the pair of MBRs ðM1;M2Þ will be

discarded. It means that for all cases, q2 will be used as pruning distance instead of the distance of Kth clos-
est pair that has been found so far.

2. For the treatment of leaf R-tree nodes (for all traversal policies), the pair of spatial objects in the distance
range ½q1; q2� is selected for the final result, using MinDist if Oid = null (points or MBRs) or D if Oid 5 null

(complex spatial objects) distance functions, as KCPQ_RBFS, and
3. The result of the query must not be ordered (for the three algorithms, KCPQ_BFS, KCPQ_DFBnB and

KCPQ_RBFS). That is, the Kheap is unnecessary. Therefore, the data structure that holds the result set
is (instead of Kheap) a file of records (resultFile) of three fields, where the first field will be the distance
and the second and the third ones will be two pointers to spatial objects in the spatial datasets involved
on the query (or to R-tree leaf nodes if simple spatial objects (points or MBRs) are stored directly in
the R-trees).

A special case of qDJQ is the Buffer Query [8] where two spatial datasets and a distance threshold are
involved. For this kind of qDJQ, we will establish q1 ¼ 0 and q2 > 0 in the experimental section.

4. Experimental results

This section provides the results of an extensive experimentation study aiming at measuring and evaluating
the efficiency of the new Recursive Best-First Search algorithms for KNNQ, qDRQ, KCPQ and qDJQ pro-

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2225
posed in Section 3, namely RBFS. And we have compared them with respect to the BFS and DFBnB imple-
mentations from the non-incremental point of view in order to draw conclusions about its real usefulness. In
particular, Section 4.1 describes the experimental settings, Section 4.2 compares query algorithms, given a spa-
tial objects, finding other spatial objects based on spatial predicates NN (KNN) and within (qDRQ), whereas
Section 4.3 compares spatial distance join algorithms, taking into account NN (KCP) and within (qDJQ) spa-
tial predicates. Finally, in Section 4.4 a summary from the experimental results is reported.

4.1. Experimental settings

In our experiments we used the R*-tree [1] as the underlying disk-resident spatial access method and min-
imum capacity was set to Cmin ¼ bCmax � 0:4c, since this Cmin value yields the best performance according to
[1]. In order to evaluate the algorithms for DBQs we have taken into account several performance metrics
(disk accesses, response time and main memory requirements). Finally, the effect of buffering for KCPQ
and qDJQ is also studied, since this parameter has an important influence on this kind of DBQ.

All experiments were run on an Intel/Linux workstation with a Pentium 4 2.4 GHz processor (the operating
system running in this computer was RedHat Linux 9), 512 Mbytes RAM and several GBytes of secondary
storage, using the gcc compiler. Moreover, the binary heaps for the algorithms (BFS (global) and RBFS
(locals)) were stored completely in main memory as well as the Kheap for the final result of KNNQ and
KCPQ. We have used synthetic datasets (uniform distributions, UN1 and UN2) that contain 100,000 2-dimen-
sional points (the size of files is 2.8 MBytes) and real-life datasets (the 2-dimensional data space is normalized
to have unit length). Real 2-dimensional datasets are data of California: (1) from [36] that contains 98,451
points (MBRs of streams (line-segments), which have been transformed to points by taking the middle point
of each segment, CAS, and the file size is 2.7 MBytes); and (2) from Sequoia benchmark [35] that consists of
62556 points (populated places, CAP, and the file size is 1.8 MBytes). The used point datasets are depicted in
Fig. 10: (a) uniform, (b) CAS and (c) CAP.

We have measured the performance of our DBQ algorithms based on the following three performance met-
rics to compare the algorithms in different aspects such as I/O activity, CPU cost and main memory
requirements:

1. Number of Disk Accesses (DA). It is the most representative parameter to measure the I/O activity, using or
not additional buffers. The number of R*-tree nodes fetched from disk is reported as the number of disk
accesses, and it may not exactly correspond to actual disk I/O, since R*-tree nodes can be found in the sys-
tem buffers.

2. Response Time (RT). The response time (total query runtime) was measured for overall execution time of
the algorithm. This measure is reported in seconds (time) and represents the overall CPU time (number of
distance computations) consumed, as well as the I/O time (number of page accesses) performed by the algo-
rithms (i.e. response time = CPU time + I/O time). The indexes construction was not taken into account
for the total response time.
Fig. 10. Datasets used in the experiments: (a) uniform, (b) CAS and (c) CAP.

2226 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
3. Maximum Heap Size for the BFS algorithms (MHS). The task of managing the global binary heap (BFS)
can be CPU intensive as its size increases. Thus, the maximum size (in KBytes) of the minimum binary heap
required by the BFS algorithms provides a reasonable indication of its main memory requirements, since
this search algorithm requires space that can be exponential (in the worst-case) in the height of the R*-trees.

4.2. Performance comparison of KNNQ and qDRQ algorithms

In our first experiment, we have measured the I/O activity and the main memory requirements (only for
BFS) for KNNQ (query point at (0.5,0.5)), using uniform (UN1) and real (CAP) datasets, and varying the
maximum branching factor (Cmax) for K = 10,000 (for lower K values the results are almost the same for
all search algorithms). The different values for Cmax are 25 (1/2 Kbyte), 50 (1 Kbyte), 102 (2 Kbytes), 204
(4 Kbytes) and 409 (8 Kbytes). The most representative structural characteristics of the R*-trees from the syn-
thetic (uniform) and real datasets, depending of Cmax, are shown in Table 2, where Hei represents the height
of the R*-trees and NON is the number of nodes (internals, leaves) of the R*-trees. Moreover, the file size of
the R*-trees (in MBytes) varies slightly with Cmax. For instance, in the case of Cmax = 25: sizeofR-
tree(U1) = sizeofRtree(U2) = 3.9, sizeofRtree(CAP) = 2.4, sizeofRtree(CAS) = 3.9; and for Cmax = 409:
sizeofRtree(U1) = sizeofRtree(U2) = 3.8, sizeofRtree(CAP) = 2.3, sizeofRtree(CAS) = 3.8.

Table 3 shows the number of R*-tree nodes fetched from disk of each search algorithm (BFS, RBFS and
DFBnB) for KNNQ. The main conclusion of this first experiment is that BFS obtains the best performance,
since it is I/O optimal for NNQ [2], although it consumes some additional Kbytes (in italic) of main memory
for the global minimum binary heap (MHS), e.g. 4.45 Kbytes for CAP and Cmax = 204. Obviously, the num-
ber of disk accesses decreases as Cmax increases and it is almost proportional with this increment (e.g. for
CAP, from Cmax = 25 to Cmax = 204 (8.16), the DA is 614 and 79 (7.77), respectively). We can also observe
an interesting behavior for RBFS, it becomes better as Cmax increases (closer to BFS), even it is better than
DFBnB for Cmax = 204 and equal to BFS for Cmax = 409 (for low values of Cmax, RBFS is inefficient). It is
owing to the fact that, the larger R*-tree node is, the cheaper the search can become following a best-first order
(i.e. the number of internal R*-tree nodes involved in the query processing is smaller). Moreover, for large
Cmax values (the number of R*-tree nodes and the height of the R*-trees are smaller, see Table 2), the RBFS
algorithm is less affected by the internal node re-expansion overhead (apart of the no revisit condition for leaf
R*-tree nodes for non-incremental processing, line 10 in Fig. 4). For example, for CAP and Cmax = 25, the
Table 3
KNNQ results in terms of disk accesses and MHS (in Kbytes), using the three search algorithms, varying Cmax and fixing K = 10,000 for
uniform and real datasets

Cmax = 25 Cmax = 50 Cmax = 102 Cmax = 204 Cmax = 409

UN1 CAP UN1 CAP UN1 CAP UN1 CAP UN1 CAP

DFBnB 916 964 543 354 234 166 156 113 51 47
RBFS 4354 3978 1293 550 282 228 149 101 51 47
BFS 648 614 327 309 168 161 92 79 51 47

MHS 15.14 12.94 10.38 7.86 6.23 5.53 10.8 4.45 5.39 3.33

Table 2
Structural characteristics of the R*-trees (heights and number of nodes), based on Cmax, for uniform and real datasets

Cmax = 25 Cmax = 50 Cmax = 102 Cmax = 204 Cmax = 409

Hei NON Hei NON Hei NON Hei NON Hei NON

UN1 4 (307,5471) 4 (73,2723) 3 (20,1344) 3 (5,687) 2 (1,345)
UN2 4 (308,5441) 4 (75,2685) 3 (19,1352) 3 (5,682) 2 (1,336)
CAP 4 (191,3394) 3 (45,1698) 3 (13,835) 3 (4,418) 2 (1,213)
CAS 4 (327,5512) 4 (80,2769) 3 (20,1369) 3 (5,686) 2 (1,344)

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2227
height of the R*-tree is 4 and the number of internal nodes is 191, RBFS is penalized for internal node re-
expansion (DA = 3978, which is 6.5 times more expensive than BFS). On the other hand, when Cmax = 204
(height = 3), RBFS needs only a 27% of disk accesses more than BFS and for Cmax = 409 (height = 2, i.e. one
root and 213 leaves) the number of node accesses is the same. Finally, note that the amount of the required
main memory resources (MHS) to perform the KNNQ, following a BFS algorithm (KNNQ_BFS), decreases
with the increase of Cmax, because R*-trees with large height values, for this performance measure, affect neg-
atively to the execution of this kind of DBQ.

In the second experiment for KNNQ, we have also measured the I/O activity and the main memory
requirements (only for BFS) for the same KNNQ configuration, varying the cardinality of the final result
(K) from 1 to 10,000 (i.e. the query result size) and fixing the maximum branching factor (Cmax) to 204 (4
Kbytes is a good choice, because it is the data page size for Linux operating system (version 2.4 of the kernel)
[5]). As Tables 3 and 4 shows the same performance metrics of each search algorithm and again BFS obtains
the best performance for all K values, although for low K the three algorithms gets the same results. The num-
ber of accesses to R*-tree nodes of each algorithm gets higher as K increases (the same behavior for MHS in
the BFS algorithm), and RBFS is better than DFBnB if we compare the recursive variants for this Cmax

value. Moreover, the deterioration is not smooth; after a threshold the cost increases slightly for large K values
(this threshold is around K ¼ 1000). This increment in DA does not depend directly on the increase of K, since
this parameter is not a structural parameter of the R*-tree as Cmax (K is a numerical limit, which represents
the cardinality of the final query result). Note that for KNNQ we have not shown the response time (in sec-
onds), because for all cases (search algorithms, K and Cmax values, data distributions, etc.) these times were
less than 0.05 s, although BFS in some cases was marginally faster than the other search algorithms (DFBnB
and RBFS).

The same experiments have been run for qDRQ (q1 ¼ 0 and q2 > 0, i.e. the region (range) is a circle cen-
tered in the query object and radius q2). The results for real datasets (the uniform data follow similar trend),
when the Cmax value is varied and q2 ¼ 0:3, are very interesting in terms of disk accesses. DFBnB and BFS:
1452 (25), 719 (50), 368 (102), 190 (204) and 102 (409). RBFS: 12830 (25), 1310 (50), 608 (102), 286 (204) and
102 (409). DFBnB and BFS have the same number of disk accesses in all cases; and RBFS is much more
expensive except for large Cmax values (i.e. it also becomes better when Cmax increases). For example, when
Cmax = 204, RBFS needs 50% more disk accesses than DFBnB and BFS. The explanation of this behavior
for DFBnB and BFS is owing to that the pruning distance for qDRQ is always q2, and it does not change
with the execution of the algorithm (it is not refined as in KNNQ), and for DFBnB there is no possibility
to follow subtrees where no desired solutions are located. This fact affects negatively to RBFS, because the
internal R*-tree node revisit is produced in all levels of the R*-tree for the same q2 value (only for large Cmax

values (409) and height = 2, RBFS gets the same results as DFBnB and BFS). That is, the more levels the
R*-tree has, the more internal node revisits the RBFS produces. Remember that BFS consumes main memory
during its execution (minimum binary heap, called GlobalMinDistHeap) and it is (in Kbytes): 22.7 (25), 11.2
(50), 5.7 (102), 2.9 (204) and 1.6 (409). The required memory (for qDRQ, it is very small quantity, because of
the spatial query is over one R*-tree) decreases with the increase of Cmax, due mainly to the height of the
index and the node size.

As for KNNQ, we have also measured the I/O activity and the main memory requirements (only for BFS)
for qDRQ, varying the distance threshold q2 (0.1, 0.2, 0.3, 0.4 and 0.5) and fixing the maximum branching
Table 4
KNNQ results in terms of disk accesses and MHS (in Kbytes), using the three search algorithms, varying K and fixing Cmax = 204 for
uniform and real datasets

K ¼ 1 K ¼ 10 K ¼ 100 K ¼ 1000 K = 10,000

UN1 CAP UN1 CAP UN1 CAP UN1 CAP UN1 CAP

DFBnB 3 3 3 4 4 4 17 17 156 113
RBFS 3 3 3 4 4 4 20 17 149 101
BFS 3 3 3 4 4 4 16 16 92 79

MHS 3.25 2.78 3.25 2.78 3.25 2.78 8.27 4.45 10.8 4.45

Table 5
qDRQ results in terms of disk accesses and MHS (in Kbytes), using the three search algorithms, varying q2 and fixing Cmax = 204 for
uniform and real datasets

q2 ¼ 0:1 q2 ¼ 0:2 q2 ¼ 0:3 q2 ¼ 0:4 q2 ¼ 0:5

UN1 CAP UN1 CAP UN1 CAP UN1 CAP UN1 CAP

DFBnB 41 43 112 99 230 190 391 312 585 385
RBFS 59 54 184 140 382 286 663 484 1004 603
BFS 41 43 112 99 230 190 391 312 585 385

MHS 0.63 0.66 1.73 1.53 3.58 2.95 6.09 4.86 9.13 6.00

20

28

36

44

52

60

1 10 15 20 25

K (cardinality of the result)

R
es

po
ns

e
T

im
e

(m
se

cs
)

DFBnB BFS RBFS

0

90

180

270

360

450

0.1 0 .2 0.3 0 .4 0.5

rho (distance threshold)

D
is

k
A

cc
es

se
s

DFBnB BFS RBFS

 KNNQ, average response time ρDRQ, average disk accesses

5

Fig. 11. Average response time and disk accesses for KNNQ and qDRQ, using the three search algorithms, varying K and q2, for real data
and Cmax = 204.

2228 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
factor (Cmax) to 204. Table 5 shows the number of disk accesses and again, DFBnB and BFS obtain the best
(and the same) performance for all q2 values. This performance measure (DA) for each search algorithm gets
higher as q2 increases (the same behavior for MHS in BFS); and RBFS is always worse than DFBnB if we
compare the recursive variants. This increment in DA does not depend directly on the increase of q2, since
this parameter (as K for KNNQ) is not a structural parameter of the R*-tree as Cmax (q2 is only a distance
threshold). Note that for qDRQ, as KNNQ, we have not shown the response time (in seconds), because for all
cases (search algorithms, q2 and Cmax values, data distributions, etc.) these times were less than 0.1 s.

Now, we are going to consider other experimental methodology for KNNQ and qDRQ. It consists of
selecting 1000 points from one dataset and using these as query set. In this case, we base our experimental
results on real datasets (Cmax = 204), since the uniform data follow similar trends. The 1000 points were cho-
sen from CAS (since CAP corresponds to the R*-tree) using a uniform data distribution from 1 to 98,451. We
then simply run 1000 KNNQ (using representative K values for real-life applications, K ¼ 1; 5; 10; 15; 20 and
25 as in [20]) and qDRQ (q2 ¼ 0:1; 0:2; 0:3; 0:4 and 0.5), and calculated the average (number of disk accesses
and the response time (elapsed time)) of all queries in the workload. For KNNQ, the three search algorithms
get the same average disk accesses (K ¼ 1; 5 and 10: DA = 3; and K ¼ 15, 20 and 25: DA = 4). For the average
response time, Fig. 11a plots the number of milliseconds versus K, and BFS is slightly slower than the others
(DFBnB and RBFS). It is due mainly to the creation and destruction of the global minimum binary heap
(GlobalMinDistHeap) in each 1000 KNNQ of the query set. In the case of qDRQ, Fig. 11b shows the average
disk accesses when q2 is varied, BFS and DFBnB obtain the same I/O cost and require fewer disk access than
RBFS (as in Table 5, for one qDRQ). For the average response time, BFS and DFBnB get very similar time
costs, but RBFS is around 35% slower. This additional time (RBFS) is consumed in the accumulation of the
internal node revisits during the execution of 1000 qDRQ in the query set configuration.

4.3. Performance comparison of KCPQ and qDJQ algorithms

The next experiment is to study the behavior of the search algorithms (DFBnB, BFS and RBFS) for KCPQ
for uniform (Unif: UN1 and UN2) and real (Real: CAS and CAP) datasets, varying the Cmax and fixing

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2229
K = 1000. Note that we have used the distance-based plane-sweep technique [16] in the implementations of all
search algorithms to accelerate the search process. Table 6 shows the number of R*-tree disk accesses (DA) of
each search algorithm. Again, BFS obtains the best I/O performance, although it consumes many Kbytes
(even Mbytes) of main memory for the global minimum binary heap (e.g. 2837.13 Kbytes for real datasets
and Cmax = 204), because KCPQ is much more expensive than KNNQ. As for KNNQ, the number of disk
accesses decreases as Cmax increases (e.g. for Real datasets, from Cmax = 25 to Cmax = 204 (8.16), the DA is
34046 and 3954 (8.61), respectively). The difference in disk accesses of BFS with respect to DFBnB and RBFS
is reduced with the increase of Cmax. For example, DFBnB needs more disk accesses than BFS: 3.16% (25),
2.16% (50), 1.23% (102), 1.21% (204) and 0% (409); and RBFS: 70.70% (25), 54.45% (50), 1.18% (102), 0.51%
(204) and 0% (409). RBFS is the worst search algorithm for low values of Cmax; although it becomes better as
the fan-out increases (it gets the same number of disk accesses as BFS for Cmax = 409 and heights = 2). The
internal R*-tree node revisit overhead is the main reason of this behavior for RBFS. To draw this conclusion,
in Table 6 and for real datasets (CAS, CAP); when Cmax = 25 (height of the both R*-trees is 4 and the num-
ber of internal nodes is (327,191)), RBFS is affected by internal node revisit (DA = 69,206, which is 2.1 times
more expensive than BFS). On the other hand, when Cmax = 204, RBFS needs only a 0.7% of disk accesses
more than BFS, and for Cmax = 409 and heights = 2, the number of disk accesses is exactly the same. The last
performance measure to consider from the analysis of the results of Table 6 is the amount of the required main
memory resources (MHS) for BFS to perform the KCPQ. It is very easy to observe that it grows with the
increase of Cmax (except for Cmax = 409 and heights = 2, which MHS value is slightly smaller than for
Cmax = 204), because of the larger the R*-tree node size is, the larger the number of pairs of MBRs from
the combination of two R*-tree nodes is (although the number of disk accesses is smaller).

In this new experiment, for KCPQ, we have considered the same performance measures as KNNQ, using
uniform and real datasets, varying the cardinality of the final result K (from 1 to 1,000,000) and fixing Cmax to
204 (see Fig. 12). Fig. 12a shows that BFS obtains the best performance for all K values using uniform data.
The number of accesses to R*-tree nodes of each algorithm gets higher as K increases (as we expect according
to [16]), and RBFS is better than DFBnB if we compare the recursive alternatives (as KNNQ) for this Cmax
Table 6
KCPQ results in terms of disk access and MHS (in Kbytes), using the three search algorithms, varying Cmax and fixing K ¼ 1000 for
uniform and real datasets

Cmax = 25 Cmax = 50 Cmax = 102 Cmax = 204 Cmax = 409

Unif Real Unif Real Unif Real Unif Real Unif Real

DFBnB 50344 34986 26822 23154 12994 9132 5510 3982 2632 1962
RBFS 83306 69206 40550 47596 12988 9152 5472 3982 2612 1946
BFS 48802 34046 26254 22784 12836 9028 5444 3954 2612 1946

MHS 454.19 316.25 546.56 386.75 1043.69 1046.01 3643.91 2837.13 3622.5 2289.75

5000

6000

7000

8000

9000

10000

1 10 100 1000 10000 100000 1000000

K (cardinality of the result)

D
is

k
A

cc
es

se
s

DFBnB BFS RBFS

3500

4200

4900

5600

6300

7000

1 10 100 1000 10000 100000

K (cardinality of the result)

D
is

k
A

cc
es

se
s

DFBnB BFS RBFS

Uniform Real

1000000

Fig. 12. KCPQ results in terms of disk accesses, using the three search algorithms (DFBnB, BFS and RBFS), varying K and fixing
Cmax = 204 for (a) uniform and (b) real datasets.

2230 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
value (204). For example, for K = 100,000, RBFS needs a 6% of disk accesses more than BFS (although it
requires 3.5 Mbytes of main memory for the global minimum binary heap) to complete this kind of DBQ,
and DFBnB a 12%, i.e. DFBnB is more expensive than RBFS in terms of I/O activity using uniform data.
Moreover, the increase of DA does not depend directly on the increase of K, since it is not a parameter that
affects to the structure of the R*-tree in its creation, as occurs with Cmax. For example, BFS for K ¼ 1000
needs a 1% of disk accesses more than K ¼ 1, and a 30% less than K = 1,000,000.

The same behavior as Fig. 12a, we can observe for KCPQ using real datasets in Fig. 12b. BFS obtains the
best performance for all K values, the number of accesses to R*-tree nodes of each algorithm gets higher as K

increases and RBFS is cheaper than DFBnB (Cmax = 204). For example, for K = 1,000,000, RBFS needs a
22% of disk accesses more than BFS to complete this kind of DBQ, and DFBnB a 33% more. Besides, as for
uniform case, the increase in DA does not depend directly on the increase of K, e.g. BFS for K ¼ 1000 needs a
1% of disk accesses more than K ¼ 1, and a 35% less than K = 1,000,000. Remember that BFS needs addi-
tional main memory for store the global minimum binary heap (GlobalMinDistHeap), and it is around 3
Mbytes.

As for KCPQ, for qDJQ, we have performed the same experiments (q1 ¼ 0 and q2 > 0, i.e. Buffer Query
[8]). The number of disk accesses for real datasets (the uniform data have similar trend), when the Cmax value
is varied and q2 ¼ 0:03, are the following. DFBnB and BFS: 405,780 (25), 142,550 (50), 43,446 (102), 14,324
(204) and 5198 (409). RBFS: 27,394,044 (25), 13,105,374 (50), 76,604 (102), 22,910 (204) and 5198 (409). As for
qDRQ, DFBnB and BFS have the same number of disk accesses in all cases; and RBFS is much more expen-
sive, except for large Cmax values. As for KCPQ, the number of disk accesses decreases as Cmax increases.
We must highlight that RBFS is always the worst search algorithm, except for Cmax = 409 and heights = 2,
where all search algorithms have the same performance. For example, when Cmax = 204, RBFS needs 60%
more disk accesses than DFBnB and BFS. Again, the main reason of this behavior for the three search algo-
rithms is that the distance pruning (q2) remains always with the same value during the whole execution of the
algorithm. For qDJQ, BFS consumes more main memory than qDRQ during its execution (GlobalMinDist-

Heap) mainly for large Cmax values and the Kbytes of main memory used by BFS are: 4787.8 (25), 1384.7
(50), 540.1 (102), 187.2 (204) and 81.2 (409). It is due to the combination of two R*-trees, and the height
of the indexes affects negatively to this performance measure (i.e. the more levels the R*-tree has, the more
main memory the BFS consumes).

As for KCPQ, we have also measured the I/O activity (number of disk accesses) and the main memory
requirements (only for BFS) for qDJQ, varying the distance threshold q2 (0.001, 0.005, 0.01, 0.02, 0.03,
0.04 and 0.05) and fixing the maximum branching factor (Cmax) to 204. Table 7 show the number of disk
accesses for real data (the same trends are for uniform), and it gets higher as q2 increases for all search algo-
rithms. DFBnB and BFS obtain the best (and the same) performance for all q2 values; and RBFS is always the
worst, because of the pruning distance (q2) is always the same (it affects negatively to the internal node revisit
overhead). From this table of results, for q2 ¼ 0:01, RBFS needs a 35% of disk accesses more than BFS (it only
requires 63.81 Kbytes of main memory for GlobalMinDistHeap) and DFBnB to complete this kind of DBQ.
Finally, and as qDRQ, the demanded main memory for BFS (MHS) grows with the increase of q2; and it is
due to the fact that, the larger pruning distance is, the more nodes are necessary to complete the distance-
based query (i.e. the number of internal R*-tree nodes involved in the query processing is larger).

In the next experiment, we are going to study the response time (in seconds) for KCPQ. First of all, we have
observed in our experiments that this performance measure is not significantly affected by the increase of
Table 7
qDJQ results in terms of disk accesses and MHS (in Kbytes), using the three search algorithms, varying q2 (Buffer Query, q1 ¼ 0) and
fixing Cmax = 204 for real datasets

q2 ¼ 0:001 q2 ¼ 0:005 q2 ¼ 0:01 q2 ¼ 0:02 q2 ¼ 0:03 q2 ¼ 0:04 q2 ¼ 0:05

DFBnB 4152 5224 6712 10196 14324 18990 24196
RBFS 4348 6336 9040 15388 22910 31464 41066
BFS 4152 5224 6712 10196 14324 18990 24196

MHS 34.97 44.28 63.81 119.28 87.28 257.16 341.13

Table 8
KCPQ results in terms of response time (in seconds), using the three search algorithms, varying Cmax and fixing K ¼ 1000 for uniform
and real datasets

Cmax = 25 Cmax = 50 Cmax = 102 Cmax = 204 Cmax = 409

Unif Real Unif Real Unif Real Unif Real Unif Real

DFBnB 0.97 0.63 0.84 0.58 0.78 0.53 0.81 0.53 0.77 0.56
RBFS 2.44 2.05 3.18 0.93 0.85 0.63 0.83 0.61 0.81 0.61
BFS 0.84 0.59 0.77 0.56 0.73 0.53 0.81 0.53 0.81 0.61

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2231
Cmax, i.e. for a fixed K value (K ¼ 1000), the response time of the query is almost the same for all Cmax val-
ues (25, 50, 102, 204 and 409), although RBFS is slower for low Cmax values as we can observe in Table 8.

For this reason, we are going to focus on this time-based metric when K is incremented for a given Cmax

value, using the three search algorithms (DFBnB, BFS and RBFS) and the distance-based plane-sweep tech-
nique to speed up the query. Fig. 13 shows the total response time (in seconds) for KCPQ using uniform
(6.a) and real (6.b) datasets, varying the cardinality of the final query result (K) from 1 to 1,000,000 and fixing
Cmax to 204. For small and medium K values (K 6 10,000), DFBnB was slightly faster than BFS and RBFS
as in [16]. But for large K values (K P 100,000) the fastest was BFS. The explanation of this behavior is owing
to the fact that DFBnB traverses the R*-trees using a depth-first search and it can deviate to the subtrees where
no optimal solutions are located; and RBFS can suffer from internal R*-tree node re-expansion overhead,
although it traverses the nodes in best-first order. For example, for K = 1,000,000 and uniform data
(Fig. 13a), RBFS is only a 9% slower (2.61 s) than BFS, and DFBnB 2.42 times slower (38.64 s), this difference
can be easily checked in such chart. Another comparative example is shown in Fig. 13b for real datasets (right
chart) and K = 1,000,000, where RBFS is only a 1.25% (0.30 s) slower than BFS, and DFBnB a 63% (15.18 s).
This behavior is conditioned by the number of MinDist computations needed to complete the query, which is a
measure that affects notably to the response time [16]. For uniform datasets, K = 1,000,000 and Cmax = 204,
DFBnB and RBFS need a 98% and 8.5% more MinDist computations than BFS, respectively. And for real
datasets, DFBnB and RBFS demand a 45.5% and 10% more MinDist computations than BFS, respectively.
As in [16], BFS minimizes the number of distance computations in our experiments.

As for KCPQ, for qDJQ, we have performed similar experiments to study its behavior with respect to the
response time. First of all, as KCPQ, we have observed the response time is not significantly affected by the
increase of Cmax. But the increase of q2 (distance threshold) has got influence over this performance metric as
we can observe in Fig. 14. It shows the total response time (in seconds) for qDJQ using uniform (14.a) and real
(14.b) datasets, varying the distance threshold q2 (0.001, 0.005, 0.01, 0.02, 0.03, 0.04 and 0.05) and fixing Cmax

to 204. For all q2 values, DFBnB and BFS are faster than RBFS, and both of them have very similar times
(although BFS is slightly faster for large q2 values). The reason of this similar trends is owing to the fact that
DFBnB does not traverse subtrees where no desired solutions are located (the pruning distance is always q2

and there is no additional disk accesses in the processing of the algorithm). We must highlight that RBFS is
0

14

28

42

56

70

1 10 100 1000 10000 100000 1000000

K (cardinality of the result)

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

DFBnB BFS RBFS

0

8

16

24

32

40

1 10 100 1000 10000 100000 1000000

K (cardinality of the result)

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

DFBnB BFS RBFS

Uniform Real

Fig. 13. KCPQ results in terms of response time, using the three search algorithms (DFBnB, BFS and RBFS), varying K and fixing
Cmax = 204 for (a) uniform and (b) real datasets.

0

22

44

66

88

110

0.001 0.005 0.01 0.02 0.03 0.04 0.05

rho (distance threshold)

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)
DFBnB BFS RBFS

0

21

42

63

84

105

0.001 0.00 5 0 .01 0 .02 0.03 0.04 0.05
rho (distance threshold)

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

DFBnB BFS RBFS

Uniform Real

Fig. 14. qDJQ results in terms of response time, using the three search algorithms (DFBnB, BFS and RBFS), varying q2 and fixing
Cmax = 204 for (a) uniform and (b) real datasets.

2232 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
always the worst search algorithm, except for small q2 values (e.g. q2 ¼ 0:001), where all of them have almost
the same performance. The explanation of this behavior is because of RBFS traverses the nodes in best-first
order regardless of the pruning distance value (q2) and it can suffer from internal R*-tree node re-expansion
overhead. For example, in the most expensive case (for q2 ¼ 0:05) and real data in Fig. 14b (the trend for uni-
form data is very similar), DFBnB is only a 2.11% (1.23 s) slower than BFS, and RBFS an 80% (46.93 s). As
for KCPQ, this behavior of qDJQ is conditioned by the number of MinDist computations needed to complete
the query, which is a measure that affects to the response time [16].

To speed up query processing, SDBMSs use spatial access methods that may partially reside in buffers if
main memory is available. The buffering effect should be studied, since even a small number of buffer pages
can drastically improve the overall performance [32]. Here, we will use the buffer architecture proposed in [16]
for KCPQ:global LRU buffer.

For these new experiments, we have coded a LRU trace-drive buffer, reporting the real number of node
accesses. The buffer is initially empty and its size (B) is given in R*-tree nodes (pages) as input (B = {0, 4,
8, 12, 16, 32, 64, 128, 256, 512 and 1024}). Fig. 15 plots the number of disk accesses versus buffer size for
the query set configuration and we can observe how buffer size affects the relative performance of the three
search algorithms for KNNQ and qDRQ using real data (Cmax = 204). The chart of the left is for KNNQ
K ¼ 10; the one of the right for qDRQ ðq2 ¼ 0:3Þ. In Fig. 15a for KNNQ, the trend (average performance)
of the three search algorithms is almost the same (for larger K values, the trend remains). This similar behavior
is due to the small number of disk accesses needed for this query using 2-dimensional data and small K values.
In Fig. 15b for qDRQ, for small buffer sizes, RBFS requires more disk accesses than BFS and DFBnB. At a
buffer size of 32, the performance of the three search algorithms coincides, and all of them have the same
trend. It is very interesting to highlight the difference with respect to the buffering impact from B ¼ 128
0.0

0.8

1.6

2.4

3.2

4.0

0 4 8 12 16 32 64 128 256 512 1024

B (LRU buffer size)

D
is

k
A

cc
es

se
s

DFBnB BFS RBFS

0

50

100

150

200

250

0 4 8 12 16 32 64 128 256 512 1024

B (LRU buffer size)

D
is

k
A

cc
es

se
s

DFBnB BFS RBFS

 KNNQ (K = 10)
ρDRQ (ρ2 = 0.3)

Fig. 15. Sensitivity of buffer size for (a) KNNQ ðK ¼ 10Þ and (b) qDRQ ðq2 ¼ 0:3Þ, using the search algorithms, real data and
Cmax = 204.

0

800

1600

2400

3200

4000

0 8 16 32 64 128 256 512 1024

B (LRU buffer size)

D
is

k
A

cc
es

se
s

DFBn B BFS RBFS

1000

1160

1320

1480

1640

1800

1 10 100 1000 1000 0 100000 1000000

K (cardinality of the result)

D
is

k
A

cc
es

se
s

DFBnB BFS RBFS

 Disk accesses varying B with K = 1000 Disk accesses varying K with B = 512

Fig. 16. KCPQ results in terms of disk accesses, using the three search algorithms (DFBnB, BFS and RBFS) and real data: (a) varying the
buffer size ðK ¼ 1000Þ, (b) varying K ðB ¼ 512Þ.

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2233
and B ¼ 256 for qDRQ, it means if there is sufficient memory to store the entire R*-tree in main memory, we
can bound the buffer size to around 50% of the R*-tree size (in term of nodes).

In these new experiments for studying the buffer impact, we are going to consider KCPQ for the workspace
configuration (CAS, CAP) with different buffer sizes (B), varying from 0 to 1024 pages (R*-tree nodes) as in
[16]. Fig. 16a shows that BFS and RBFS presents an average excess of I/O activity around 24% and 23%,
respectively, for K ¼ 1000 and Cmax = 204 with respect to DFBnB, as can be noticed by the gap between
the lines (mainly for B 6 256, since for B values larger than 512 the difference is negligible, less than 1%). This
behavior is owing to the fact that recursion with a depth-first order (DFBnB) favors the most recently used
pages (LRU) in the backtracking phase and this effect is preserved in case of large buffer sizes. Moreover,
the best-first order (BFS and RBFS) is penalized when the LRU replacement algorithm is adopted, even when
the recursion is used (RBFS), since LRU cannot avoid the node re-expansion overhead of RBFS for low and
medium buffer sizes.

On the other hand, Fig. 16b illustrates that the gap for KCPQ algorithms (BFS and RBFS with respect to
DFBnB) remains when the K value is incremented (and it grows when K is very large) and B ¼ 512 pages. For
instance, the average I/O saving between DFBnB and RBFS for medium K values (K = 10,000) is 6%, and
DFBnB with respect to BFS is 15%. For large K values, this gap is even greater, for example K = 100,000
the I/O saving for DFBnB with respect to RBFS and BFS is 14% and 23%, respectively. But, special attention
deserves K = 1,000,000 (very large K values), where the DFBnB saving is around 48% with respect to RBFS
and 58% for BFS. Again, this interesting effect for DFBnB is owing to the combination of recursion, depth-
first order and LRU page replacement policy. Moreover, we can observe that K does not radically affect the
relative performance with respect to the number of disk accesses for DFBnB, due to the important saving of
including a global LRU buffer. But this relative performance is more affected by the increase of K in RBFS
and BFS. For example, from K ¼ 1 to K = 1,000,000 for DFBnB there is only a 2% extra cost, whereas for
RBFS and BFS this increase of I/O cost is around 46% for both of them.

In the last experiment, we are going to study the behavior of qDJQ in presence of a global LRU buffer, as
for KCPQ. We will use the same workspace configuration (CAS, CAP) with different buffer sizes (B), varying
from 0 to 1024 pages. Fig. 17a shows that RBFS and BFS present a strange behavior for q2 ¼ 0:03 and
Cmax = 204 with respect to DFBnB, and we can notice the huge gap (much larger than for KCPQ) between
the lines (except to B ¼ 1024). DFBnB, for qDJQ, has a similar behavior in presence of buffer that for KCPQ,
because this search algorithm favors the LRU replacement policy in the backtracking phase. With DFBnB, we
can save many disk accesses, e.g. if we have a buffer B ¼ 512, we obtain 13 times less disk accesses that when
there is no buffer ðB ¼ 0Þ. The algorithms following a best-first order (BFS and RBFS) are severely penalized
when LRU is used in comparison with DFBnB. RBFS has a difference of around 30% in average with respect
to BFS when B 6 32 (due to the internal node re-expansion in order to follow the best-first order, when the
buffer size is small; i.e. the combination of recursion and LRU replacement policy is not enough for small buf-
fer sizes), and for B P 64 both lines have the same trend.

0

4600

9200

13800

18400

23000

0 8 16 32 64 128 256 512 1024

B (LRU buffer size)

D
is

k
A

cc
es

se
s

DFBnB BFS RBFS

1000

2700

4400

6100

7800

9500

0.001 0 .005 0.01 0.02 0.03 0.04 0.05

rho (distance threshold)

D
is

k
A

cc
es

se
s

DFBnB BFS RBFS

 Disk accesses varying B with ρ2 = 0.03 Disk accesses varying ρ2 with B = 512

Fig. 17. qDJQ results in terms of disk accesses, using the three search algorithms (DFBnB, BFS and RBFS) and real data: (a) varying the
buffer size ðq2 ¼ 0:03Þ, (b) varying q2 ðB ¼ 512Þ.

2234 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
As we can observe in Fig. 17b, the performance lines of BFS and RBFS grow when the q2 value is incre-
mented (B ¼ 512 pages); and such line for DFBnB is almost constant. For instance, the average I/O saving
between DFBnB and RBFS (and BFS) for medium q2 values ðq2 ¼ 0:02Þ is more than three times (DFBnB:
1100 and RBFS: 3551), and for large q2 values ðq2 ¼ 0:05Þ, this gap is much greater and the I/O saving is more
than 8 times (DFBnB: 1112 and RBFS: 9154). As for KCPQ, DFBnB is the best and this interesting behavior
is owing to the combination of recursion, depth-first order and LRU page replacement policy. Moreover, we
can also observe that the increase of q2 does not affect the relative performance with respect to the number of
disk accesses for DFBnB, due to the important saving of including a global LRU buffer. But this relative per-
formance is more affected by large q2 values in DFBnB (for RBFS and BFS, it is smaller). For example, from
q2 ¼ 0:01 to q2 ¼ 0:05 for DFBnB there is only a 2% extra cost (the same as KCPQ), whereas for RBFS and
BFS, this increase of I/O cost is around three times for both of them.

4.4. Conclusions from the experiments

The main conclusions from this experimental section, taking into account the previous performance mea-
sures, are summarized in Table 9.
Table 9
Comparison of three search algorithms (relative merits) with respect to the DBQs

KNNQ–KCPQ qDRQ–qDJQ

DFBnB It is linear-space consuming with respect to the height
of the R*-trees
It is the worst in the number of disk accesses, but it
is the best in presence of an LRU buffer
It is appropriate in systems with space (memory)
limitations
It is the slowest for large K values in KCPQ

It has the same behavior as BFS with respect to
DA and RT
It is owing to the fact that the pruning distance is
always q2, and there is no possibility to follow
subtrees where no desired solutions are located
It is the best in presence of an LRU buffer

RBFS It is linear-space consuming with respect to the height
of the R*-trees
It is better than DFBnB in disk accesses when the
node size is large enough (small node sizes and large K

values, it is affected by the internal node revisits)
It is appropriate in systems with space memory
limitations

It is the worst alternative in terms of DA and RT
It is mainly owing to the internal node revisits in order
to follow a best-first order (regardless of the q2 value
and the node size)

BFS It is the fastest
It minimizes the number of disk accesses without
LRU buffer
It is space-consuming, and it is preferable when we
do not have memory limitations

It is the fastest
It minimizes the number of disk accesses
It is space-consuming

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2235
1. BFS is the best for all DBQs, since BFS is optimal in terms of the number of disk accesses for KNNQ [3]
and KCPQ [16]; and this search algorithm needs the minimum number of distance computations [16]. But it
can consume several Mbytes of main memory to keep the global minimum binary heap, even more main
memory requirements are needed if K is very large for KCPQ. The reason of this high memory require-
ments is because of BFS has a space complexity of O(n) in the worst case (n is the number of MBRs in
internal R-tree nodes) for KNNQ [3], since if all elements of the tree are stored in the global minimum bin-
ary heap, it can have a length of O(n). The formula of n can be estimated for R-trees as follows, where
f = Cmax * Uavg is the effective R-tree node capacity (Uavg is the average R-tree node utilization), N is
the number of points indexed by the R-tree and h is its height (the leaf nodes are located at level
l ¼ h� 1, the root at level l ¼ 0, and internal nodes 0 6 l 6 h� 1).
n ¼ f �
Xh�2

l¼0

N
f h�l
However, for KNNQ and KCPQ, RBFS obtains similar behaviors with negligible differences in most cases;
and for qDRQ and qDJQ, DFBnB has the same performance. This equivalent behavior with respect to
DFBnB is owing to the pruning distance is always q2 and there is no possibility to follow subtrees where
no desired solutions are located.

2. RBFS is competitive for KNNQ and KCPQ (very similar behaviors to BFS) where the maximum branch-
ing factor (Cmax) is large enough in terms of disk accesses and response times (for large K values the trends
remain), even better than DFBnB. We have to highlight that RBFS does not have good performance when
Cmax (node size) is small, since it leads to an increment in the number of nodes of the R*-tree, and hence an
increment of the internal node revisits during the processing of the algorithm. RBFS is a good alternative
when we have main memory limitations in our computer, since it is linear space consuming with respect to
the height of the R*-trees, for this reason RBFS is preferable to BFS. Nevertheless, RBFS is the worst alter-
native for qDRQ and qDJQ, since it is penalized by the internal node re-expansion overhead, to follow a
best-first order.

3. DFBnB is a good alternative for KNNQ, but for KCPQ consumes many time to report the final result
when K is very large; because, in this case, it can follow many subtrees where no desired solutions are
located (unnecessary node visits). It has the same performance as BFS for qDRQ and qDJQ, due to the
searching characteristics for such DBQs. Moreover, it is also linear space consuming with respect to the
height of the R*-tree (as RBFS), and it is suitable to install in systems with memory limitations by high
process overload (e.g. Web Server in a Web GIS architecture [32]). The reason of this small memory
requirements (as RBFS) is because of DFBnB has a worst case space complexity of O(log n) for KNNQ
[3], because the recursion depth is at most equal to the height of the R-tree. The height of the R-tree, h,
can be estimated by the following formula:
h ¼ 1þ logf
N

C max

� �� �
4. When a global LRU buffer is included, the behavior of the algorithms is very interesting. For KCPQ and
qDJQ, DFBnB is the best in terms of disk accesses, due to the combination of recursion, depth-first order
and LRU page replacement policy (K and q2 do not affect the I/O performance). On the other hand, RBFS
has an interesting behavior for KCPQ, which is better than BFS because of the use of recursion in its imple-
mentation, but LRU replacement algorithm cannot avoid the node re-expansion overhead for low and
medium buffer sizes. But for qDJQ, RBFS and BFS have almost the same behavior, and it is far away from
DFBnB.

5. Conclusions and ideas for future work

Efficient processing of DBQs (e.g KNNQ, qDRQ, KCPQ and qDJQ) is of great importance in spatial
databases due to the wide area of applications that may address such queries. To the best of the authors’

2236 A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237
knowledge, it is the first attempt to adapt the RBFS algorithm to this type of spatial queries. RBFS is a general
search algorithm that runs in linear space and traverses nodes in best-first order, but it can suffer from node re-
expansion overhead (i.e. to expand nodes in best-first order, some nodes can be read more than one). In this
paper, based on the properties of distance functions between two MBRs in the multidimensional Euclidean
space, we propose new pruning mechanisms to apply them in the design of new non-incremental RBFS
algorithms for KNNQ (KNNQ_RBFS), qDRQ (qDRQ_RBFS), KCPQ (KCPQ_RBFS) and qDJQ
(qDJQ_RBFS) between spatial objects indexed in R-trees. And we have compared experimentally these algo-
rithms with respect to BFS and DFBnB traversal policies for the same DBQs.

In our experimental study, we have used an R-tree variant (R*-tree) in which the spatial objects (points) are
stored directly in the tree leaves. Moreover, an exhaustive performance study was also included, which
resulted to several conclusions about the efficiency of each search algorithm (BFS, RBFS and DFBnB), in
terms of disk accesses, response time and main memory requirements (only for BFS), with respect to maxi-
mum branching factor (Cmax), cardinality of the final query result (K), distance threshold (q) and the size
of a global LRU buffer (B) for KCPQ and qDJQ. The most important conclusions for the experimental exe-
cutions of the search algorithms are the following: (1) BFS is the best for all DBQs, but it can consume many
main memory resources to keep the global minimum binary heap. (2) RBFS is competitive for KNNQ and
KCPQ where the maximum branching factor (Cmax) is large enough in terms of disk accesses and response
times (for all K values the trends remain), even better than DFBnB. RBFS is a good alternative when we have
main memory limitations in our computer because of high process overload in our system, since it is linear
space consuming with respect to the height of the R-trees. Nevertheless, RBFS is the worst alternative for
qDRQ and qDJQ, due to the high number of internal node revisits during the processing of the algorithms.
(3) DFBnB is appropriate for KNNQ, but for KCPQ consumes long time to report the final result when K is
very large. For qDRQ and qDJQ, it has the same performance as BFS. Moreover, as RBFS, it is also linear
space consuming with respect to the height of the R-tree. (4) When a global LRU buffer is included for KCPQ
and qDJQ, DFBnB is the best in terms of disk accesses (K and q2 do not radically affect the I/O performance),
and RBFS has an interesting behavior for KCPQ, which is better than BFS owing to the use of recursion in its
implementation.

Future work may include:

1. Extensions of RBFS algorithms to other complex DBQs as: iceberg distance join query [34] and K Nearest

Neighbor Join query [4].
2. Approximate implementations of RBFS algorithms by using e-approximate and a-allowance techniques

that are distance-based approximate techniques [14].
3. Design the incremental versions of the RBFS algorithms for KNNQ and KCPQ according to [20,19]. For

example, in the case of KNNQ, the algorithm has to traverse the R-tree in best-first order (in ascending
order of distances), reporting one by one the elements stored in the leaf nodes, according to its distance.

Acknowledgements

The authors wish to thank INDALOG (TIC2002-03968) and Almacenes de Datos Espacio-Temporales basa-

dos en Ontologias (TIN2005-09098-C05-03), projects of the Spanish Ministry of Science and Technology.
Moreover, we owe our special thanks to the anonymous reviewers whose comments were critical to enhancing
the quality of the paper.

References

[1] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, The R*-tree: an efficient and robust access method for points and rectangles, in:
Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data (SIGMOD), Atlantic City, NJ, 1990, pp.
322–331.

[2] S. Berchtold, C. Böhm, D.A. Keim, H.P. Kriegel, A cost model for nearest neighbor search in high-dimensional data space, in:
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Tucson, AZ, 1997,
pp. 78–86.

A. Corral, J.M. Almendros-Jiménez / Information Sciences 177 (2007) 2207–2237 2237
[3] C. Böhm, S. Berchtold, D.A. Keim, Searching in high-dimensional spaces: index structures for improving the performance of
multimedia databases, ACM Computing Surveys 33 (3) (2001) 322–373.

[4] C. Böhm, F. Krebs, High performance data mining using the nearest neighbor join, in: Proceedings of the IEEE International
Conference on Data Mining (ICDM), Maebashi, Japan, 2002, pp. 43–50.

[5] D.P. Bovet, M. Cesati, Understanding the Linux Kernel, O’Reilly, Sebastopol, 2003.
[6] T. Brinkhoff, H.P. Kriegel, B. Seeger, Efficient processing of spatial joins using R-trees, in: Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data (SIGMOD), Washington, WA, 1993, pp. 237–246.
[7] P. Brown, Object-Relational Database Development: A Plumber’s Guide, Prentice-Hall, Indianapolis, 2001.
[8] E.P.F. Chan, Buffer queries, IEEE Transactions Knowledge Data Engineering (TKDE) 15 (4) (2003) 895–910.
[9] J.K. Chen, Y.H. Chin, A concurrency control algorithm for nearest neighbor query, Information Sciences 114 (1–4) (1999) 187–204.

[10] K.L. Cheung, A.W. Fu, Enhanced nearest neighbour search on the R-tree, ACM SIGMOD Record 27 (3) (1998) 16–21.
[11] N. Chrisman, Exploring Geographic Information Systems, John Wiley and Sons, New York, 2002.
[12] D. Comer, The ubiquitous B-tree, ACM Computing Surveys 11 (2) (1979) 121–137.
[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge, 2003.
[14] A. Corral, J. Cañadas, M. Vassilakopoulos, Approximate algorithms for distance-based queries in high-dimensional data spaces using

R-trees, in: Proceedings of the 6th East European Conference on Advances in Databases and Information Systems (ADBIS),
Bratislava, Slovakia, 2002, pp. 163–176.

[15] A. Corral, Y. Manolopoulos, Y. Theodoridis, M. Vassilakopoulos, Closest pair queries in spatial databases, in: Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data (SIGMOD), Dallas, TX, 2000, pp. 189–200.

[16] A. Corral, Y. Manolopoulos, Y. Theodoridis, M. Vassilakopoulos, Algorithms for processing K-closest-pair queries in spatial
databases, Data and Knowledge Engineering (DKE) 49 (1) (2004) 67–104.

[17] V. Gaede, O. Günther, Multidimensional access methods, ACM Computing Surveys 30 (2) (1998) 170–231.
[18] A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the 1984 ACM SIGMOD International

Conference on Management of Data (SIGMOD), Boston, MA, 1984, pp. 47–57.
[19] G.R. Hjaltason, H. Samet, Incremental distance join algorithms for spatial databases, in: Proceedings of the 1998 ACM SIGMOD

International Conference on Management of Data (SIGMOD), Seattle, WA, 1998, pp. 237–248.
[20] G.R. Hjaltason, H. Samet, Distance browsing in spatial databases, ACM Transactions on Database Systems (TODS) 24 (2) (1999)

265–318.
[21] Y.W. Huang, N. Jing, E.A. Rundensteiner, Spatial joins using R-trees: breadth-first traversal with global optimizations, in:

Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB), Athens, Greece, 1997, pp. 396–405.
[22] R.E. Korf, Linear-space best-first search, Artificial Intelligence 66 (1) (1993) 41–78.
[23] N. Koudas, K.C. Sevcik, Size separation spatial join, in: Proceedings of the 1997 ACM SIGMOD International Conference on

Management of Data (SIGMOD), Tucson, AZ, 1997, pp. 324–335.
[24] N. Koudas, K.C. Sevcik, High dimensional similarity joins: algorithms and performance evaluation, IEEE Transactions Knowledge

Data Engineering (TKDE) 12 (1) (2000) 3–18.
[25] Y. Manolopoulos, A. Nanopoulos, A.N. Papadopoulos, Y. Theodoridis, R-Trees: Theory and Applications, Advanced Information

and Knowledge Processing Series, Springer, London, 2005.
[26] N. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, San Francisco, 1998.
[27] Oracle Technology Network Oracle Spatial User’s Guide and Reference, 2001. Downloadable from: <http://technet.oracle.com/doc/

Oracle8i_816/inter.816/a77132.pdf>.
[28] A. Papadopoulos, Y. Manolopoulos, Performance of nearest neighbor queries in R-Trees, in: Proceedings of the 6th International

Conference on Database Theory (ICDT), Delphi, Greece, 1997, pp. 394–408.
[29] A.N. Papadopoulos, A. Nanopoulos, Y. Manolopoulos, Processing distance join queries with constraints, The Computer Journal 49

(3) (2006) 281–296.
[30] N. Roussopoulos, S. Kelley, F. Vincent, Nearest neighbor queries, in: Proceedings of the 1995 ACM SIGMOD International

Conference on Management of Data (SIGMOD), San Jose, CA, 1995, pp. 71–79.
[31] T. Seidl, H.P. Kriegel, Optimal multi-step k-nearest neighbor search, in: Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data (SIGMOD), Seattle, WA, 1998, pp. 154–165.
[32] S. Shekhar, S. Chawla, Spatial Databases: A Tour, Prentice-Hall, New Jersey, 2003.
[33] H. Shin, B. Moon, S. Lee, Adaptive multi-stage distance join processing, in: Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data (SIGMOD), Dallas, TX, 2000, pp. 343–354.
[34] Y. Shou, N. Mamoulis, H. Cao, D. Papadias, D.W. Cheung, Evaluation of iceberg distance joins, in: Proceedings of the 8th

International Symposium on Spatial and Temporal Databases (SSTD), Santorini Island, Greece, 2003, pp. 270–288.
[35] M. Stonebraker, J. Frew, K. Gardels, J. Meredith, The sequoia 2000 benchmark, in: Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data (SIGMOD), Washington, WA, 1993, pp. 2–11.
[36] The R-tree Portal (TIGER/Line� files, Geography Division, US Census Bureau, <http://www.census.gov/geo/www/tiger/>) <http://

www.rtreeportal.org/>, 2004.
[37] Z. Yang, G. Yang, A near-optimal similarity join algorithm and performance evaluation, Information Sciences 167 (1–4) (2004)

87–108.
[38] W. Zhang, R.E. Korf, Performance of linear-space search algorithms, Artificial Intelligence 79 (2) (1995) 241–292.

http://technet.oracle.com/doc/Oracle8i_816/inter.816/a77132.pdf
http://technet.oracle.com/doc/Oracle8i_816/inter.816/a77132.pdf
http://www.census.gov/geo/www/tiger/
http://www.rtreeportal.org/
http://www.rtreeportal.org/

	A performance comparison of distance-based query algorithms using R-trees in spatial databases
	Introduction
	Related works and motivation
	Search algorithms
	Distance-based queries using R-trees
	Motivation and contributions

	Recursive Best-First search algorithms for DBQs using R-trees
	R-trees
	Distance function and pruning mechanism
	The Recursive Best-First Search algorithm for KNNQ (KNNQ_RBFS)
	The Recursive Best-First Search algorithm for rho DRQ (rho DRQ_RBFS)
	The Recursive Best-First Search algorithm for KCPQ (KCPQ_RBFS)
	The Recursive Best-First Search algorithm for rho DJQ (rho DJQ_RBFS)

	Experimental results
	Experimental settings
	Performance comparison of KNNQ and rho DRQ algorithms
	Performance comparison of KCPQ and rho DJQ algorithms
	Conclusions from the experiments

	Conclusions and ideas for future work
	Acknowledgements
	References

