
 Journal of
Visual Languages
 & Computing

ARTICLE IN PRESS
1045-926X/$ - se

doi:10.1016/j.jvl

�Correspondi
E-mail addre

liribarne@ual.es
Journal of Visual Languages and Computing 19 (2008) 695–720

www.elsevier.com/locate/jvlc
An extension of UML for the modeling of WIMP user interfaces

Jesús M. Almendros-Jiménez�, Luis Iribarne

Information Systems Group, University of Almerı́a, Spain

Received 16 December 2005; received in revised form 7 September 2007; accepted 13 December 2007
Abstract

The Unified Modeling Language (UML) [OMG, Unified Modeling Language Specification, Version 2.0, Technical

Report, Object Management Group hhttp://www.omg.org/technology/documents/formal/uml.htmi, 2005] provides system

architects working on analysis and design (A&D) with one consistent language for specifying, visualizing, constructing, and

documenting the artifacts of software systems, as well as for the business modeling. The user interface (UI), as a significant

part of most applications, should be modeled using UML, and automatic CASE tools may help to generate UIs from

UML designs. In this paper, we describe how to use and specialize UML diagrams in order to describe the UIs of a

software system based on WIMP (Windows, Icons, Menus and Pointers). Use case diagrams are used for extracting the main

UIs. Use cases are described by means of user-interaction diagrams, a special kind of activity diagrams in which states

represent data output actions and transitions represent data input events. Input and output interactions in the

user-interaction diagrams help the designer to extract the UI components used in each UI. We obtain a new and specialized

version of the use case diagram for the UI modeling (called UI diagram) and a class diagram for UI components—called

UI-class diagram. The user-interaction, UI and UI-class diagrams, can be seen as the UML-based UI models of the system.

Finally, UI prototypes can be generated from UI-class diagrams with CASE tool support. As case study of our technique,

we will describe an Internet book shopping system.

r 2008 Elsevier Ltd. All rights reserved.

Keywords: UML 2.0; Use cases; Model-driven development; User interface modeling; Human–computer interaction
1. Introduction

The user interface (UI) design has been explored
in the communities of Human–Computer Interaction

(HCI) and Software Engineering (SE): the software
should carry out those tasks for which it is
conceived and the UI should be friendly and usable
enough for users [2–4]. UI design is a software
development task which has been deeply studied
e front matter r 2008 Elsevier Ltd. All rights reserved

c.2007.12.004

ng author. Tel.: +34950015687.

sses: jalmen@ual.es (J.M. Almendros-Jiménez),

(L. Iribarne).
from the early years of computer software develop-
ment [5,6]. Due to the increasingly complexity
applications, the UI design has become a more
difficult task in which many artifacts and software
components are required. Many proposals of soft-

ware architectures (for instance, Seeheim model [7],
MVC [8,9], PAC [10,11], ARCH [12] and PAC
Amodeus [13] among others) propose guidelines
about how the UI design and the implementation
should be carried out. UI design aspects focus not
only of the behavioral parts of the UI but also on the
layout part [14–16]. In addition, UI design methods
involve user participation during the information
.

http://www.omg.org/technology/documents/formal/uml.htm
www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2007.12.004
mailto:jalmen@ual.es
mailto:liribarne@ual.es

ARTICLE IN PRESS

Table 1

Models used in an MDD process for user interfaces

Model Description

Task model It specifies the tasks that the user will carry out on

the user interface

Domain

model

It describes the domain objects interacting in each

task detected in the task model

User model It describes the user requirements

Dialogue

model

It describes the communication between the user

and the user interface

Presentation

model

It describes the user interface

J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720696
gathering phases, UI design and UI evaluation. All
these aspects are called user centered design methods

[17,18].
The handling of more complex applications has

lead to the development of tools for UI design [5,6],
in which the system designer works with high-level

and abstract models, in particular visual modeling of
UIs. The level of abstraction on UI design allows
the UIs to be adapted and generated for several
platforms. The design of UIs is now a development
process in which a high-level specification and
modeling of the UI play a crucial role.

The model-driven development (MDD) of UIs
[19,20] consists of the specification of the UIs
through declarative and visual models that describe
multiple perspectives and artifacts involved in the
development of the UI. The MDD is based on
visual tools in which the system designer uses a
graphical notation to depict multiple models from
different perspectives. Code generators of such tools
generate a code according to the specified model
which allows the changes in the specification to be
easily mapped into the code. The adoption of the
MDD approach has the following advantages [20]:
�
 More abstract descriptions of UIs than tradi-
tional approaches.

�
 A systematic design and description of UIs:
� UI design from different levels of abstraction.
� Increasing refinement of models.
� Reuse of specifications of user models.
�
 Automatizing of design and implementation
of UIs.

However, there are some troubles to be solved:
�
 Models are sometimes hard to learn [3]: notation
can be complex and the semantics may not be
well-known. Visual design tools can help to
overcome both problems.

�
 The integration of the functional requirements
and the UI is still a task to be solved.

�
 There is no common agreement about what
models should be used for modeling the UI.

Despite there is no common agreement about what
models should be used in a MDD process for UIs,
there are common models used in most approaches
in the literature: task, domain, user, dialogue and
presentation models (see Table 1).

Task models specify what tasks the user will carry
out on the UI. Tasks are decomposed in subtasks in
order to describe the steps to accomplish a given
task. Task models very often include functional
requirements and UI tasks. They also include non-
functional requirements like time response. Some of
the most well-known approaches for task models
are textual methods like GOMS (Goals, Operators,
Methods, Selection rules) [21,22] and formal meth-
ods like ConcurTaskTrees (CTT) [19,23].

The domain model describes the objects that
interact in each task detected in the task model.
Although some approaches use the entity/relation-

ship diagram [24–27], most of them use class

diagrams [28–37]. Objects can be classified [38] into
interaction objects (i.e. UI components), and do-

main/application objects (i.e. non-UI objects) repre-
senting databases or external devices.

The user model describes user’s requirements:
preferences, information, devices owned, context,
etc. Each user is identified with a role. The purpose
of the user model is to provide an appropriate UI
for the user requirements. The user model is used to
personalize and/or adapt the interface for the user.

The dialogue model describes the communication
between the user and the UI. Basically, it describes
how the user introduces input data, how the user
interacts with the UI, and how the UI shows output

data. There are some approaches that use diagrams
like Petri nets [32], statecharts [33,38,39] or activity

diagrams [25–27,29,40]. In modern user interfaces
like those based on hypertext with dynamic content,
the dialogue model is replaced by the navigational

model where the user can navigate through different
web (on-the-fly generated) pages following hyper-

links. In most cases statecharts are used for
modeling web navigation [41,42].

The presentation model represents the UI. It
describes the UI components and its layout. There
are some approaches [25–27,30,38,43] that offer

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 697
both an abstract model and a concrete model. The
abstract model describes abstract objects of inter-
action and the concrete model describes concrete
objects for different platforms.

The Unified Modeling Language (UML) [1]
provides system architects working on analysis
and design (A&D) with one well-consistent lan-
guage for specifying, visualizing, constructing, and
documenting the artifacts of software systems, as
well as for business modeling. The UI, as a
significant part of most applications, should be
modeled using UML [44], and automatic CASE

tools may help to generate UIs from UML designs.
In this paper we will present how to use and

specialize UML diagrams in order to describe the
UI of a software system based on WIMP (Windows,
Icons, Mouse, Pointers) interfaces. We will follow a
particular MDD perspective. Such perspective has
the following features:
(a)
Tab

Cor

Step

#1

#2

#3

#4
We use a UML use case diagram to describe the
main UIs.
(b)
 We describe each use case by means of a special
kind of activity diagrams, called user-interaction

diagrams, in which states represent data output

actions and transitions represent data input

events. This perspective allows the designer to
model the dialogue (i.e. input–output interac-
tion) in each main UI. In addition, some states
of the user-interaction diagrams correspond with
small pieces of interaction described separately
in other user interaction sub-diagrams. This
provides a natural decomposition of the main
UIs into secondary UIs for specific tasks.
(c)
 A new and specialized version of the use case

diagram representing the UI model is obtained:
the UI diagram. This user-interface diagram

describes the main and secondary windows
used for each defined task. These windows
are obtained from the set of user-interaction

diagrams built in the previous step. In other
words, the description of use cases by means of
le 2

respondence between models and UML diagram views

Model View

Dialogue User-interaction di

Task User-interface diag

Presentation User-interface clas

Presentation User-interface prot
user-interaction diagrams leads to a natural
decomposition on pieces of user interaction.
Now, the system designer can consider new
windows for some pieces of interaction. These
new windows are included in the UI diagram as
use cases.
(d)
 Each input and output interaction of the user-

interaction diagrams allows the system designer
to extract the UI components (i.e. widgets)
used in each UI. A UI-class diagram is obtained
from the set of user-interaction diagrams
containing the set of UI classes needed for the
user interaction. The user-interaction, UI and
UI-class diagrams can be considered as the
UML-based UI models of the system.
(e)
 Finally, UI prototypes can be generated from the
UI-class diagram. A CASE tool can help to
determine the layout of each UI component in
each window. There is a correspondence be-
tween the UI prototypes and the UI diagram.
Each use case of the UI diagram defines a
window in the UI.
In other words (see also Table 2):
�
 We consider the use case diagram as a starting

point of the UI model. The use case diagram
specifies the main windows or tasks that each user
or group of users can carry out.

�
 We define a new kind of diagram, UI diagram: a
specialized version of the use case diagram as a
high-level description of the UI. This view
represents the task model. The UI diagram

describes the main and secondary tasks by means
of use cases. In addition, each task/use case has
its own presentation unit (i.e. window).

�
 In addition, we integrate this system view with a
set of specialized activity diagrams called user-

interaction diagrams, which define the dialogue

model. Each use case of the UI diagram is
described by means of a user-interaction dia-
gram. In other words, each element of the task
UML diagram

agrams Specialized activity diagrams

rams Specialized use case diagrams

s diagrams Class diagrams

otypes Class diagrams

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720698
model is represented by means of an element of
the dialogue model.

�
 In addition, a UI-class diagram is generated from
the set of user-interaction and UI diagrams,
representing the presentation model. This class
diagram describes the UI components (i.e. win-
dows and widgets) of the UI.

�
 Finally, UI prototypes can be generated from
UI-class diagrams with a CASE tool support.
This permits a preliminary and quick system
user’s view to be analyzed. This view also des-
cribes the presentation model of the modeled UI.

This perspective follows an MDD-based technique
in which diagrams are integrated, providing multi-
ple views of the developed system (i.e. the UI).

One of the main contributions of our work on UI
modeling is the introduction of two concepts:
inclusion and generalization. When a use case is
described by means of a user-interaction diagram,
some pieces of the interaction are separately
described. This is the case of inclusion. General-
ization is a more complex relation. When use cases
are described by means of a user-interaction

diagrams, there are some use cases that represent
similar interactions. In other words, since the
dialogue between the user and the UI follows the
same logic, the UI components are similar (i.e. they
follow the same pattern).

The UML use case diagram has two mechanisms:
inclusion and generalization/specialization between
use cases. In our UI diagram, we will use these kinds
of mechanisms to relate use cases/tasks. A use case
is included in another use case when the interaction
is included. On the other hand, a use case
generalizes another use case when most general
one has at least the same interactions/UI components

as the particular use case, and the particular one can
replace/rewrite some of them by more particular
ones. In other words, use cases are compared
following criteria of reuse and replacement, repre-
senting inheritance between use cases.

Finally, our paper is also concerned with a formal

description of our model-driven development techni-

que. Such a formalization of our technique can be
shown through two main purposes:
�
 A MDD technique that involves multiple
perspectives can lead to inconsistent models.
Models should be integrated and consistent.
Our formal definition expresses when the UI
and user interaction diagrams are consistent or
well-formed. Such consistence proving can be
viewed as a model checking technique.

�
 Our technique goes towards the automatic gen-

eration of code from UML models. Therefore, a
formal translation of user-interaction diagrams
and UI diagrams into UIs is defined (in parti-
cular, this translation can be used to generate
UI-class diagrams).

The main limitations of the approach are two.
Firstly, we restrict our technique to WIMP

interfaces. We believe that our technique could be
extended to Post-WIMP interfaces based on hyper-

text with dynamic content and also extended to the
handling of adaptation and multi-modality. Dialogue
models for Web content have been studied in some
previous works [41,42,45–47]. Our intention is to
extend our work in the future by following the
quoted proposals.

Secondly, our proposed technique is only a piece
of a complete method (i.e. set of processes, notations
for steps, etc.) for UI design. In particular, the
layout part of the UIs is not covered by our
technique and therefore the technique does not
properly contribute to a complete UI design method.
Ergonomic criteria [2,14–16,48,49] are still crucial
for the usability of the UI. The main goal of the
proposed technique is the dialogue and UI modeling
in the framework of UML. In addition, the
proposed technique is useful for rapid prototyping
of UIs in modeling phases. However, such pre-
liminary design should be just a prototype, and we
recommend the system designer to improve and
check the prototypes by using user center design and

evaluation methods [17,18].

1.1. Organization of the paper

The rest of this paper is organized as follows.
Section 2 overviews the related word. Section 3
describes our MDD for UI modeling. Section 4
shows an Internet book shopping (IBS) example
that illustrates our technique. Section 5 formalizes
the technique. Finally, Section 6 presents conclu-
sions and discusses future work.

2. Related work

There are many works in the literature dealing
with the problem of model-driven development of
UIs. On the one hand, there are two main
approaches: those extending or partially using

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 699
UML diagrams, and those non-UML proposals. On
the other hand, most proposals model WIMP

interfaces. However, there are some recent propo-
sals [41,42,45] concerned with the design of modern
UIs (Post-WIMP interfaces) based on hypertext

with dynamic content: client and server side applica-

tions, and on-the-fly page generation. Finally, there
is some recent interest [45,50–53] in XML-based

representation and manipulation of interaction data,
that is, the data that define and relate all the
relevant elements of a UI.

With respect to MDD-based techniques of UIs,
there are many relevant proposals with CASE tool
support (see [20] for a survey). Some of them are
non-UML proposals and others are hybrid or
extensions of UML. The most relevant and related
with our approach are TRIDENT, TERESA,
WISDOM, UMLi and IDEAS (see Table 3).

TRIDENT (Tools foR an Interactive Development

ENvironmenT) [25–27] is a proposal for an environ-
ment of the development of highly interactive
applications. UIs are generated in an automatic or
quasi-automatic way. The task model of TRIDENT
uses the entity/relationship model together with
the so-called activity chaining graphs. The presenta-
tion model is based on abstract and concrete

interaction objects, presentation units and logical
windows. There is a CASE tool called SEGUIA
(System Export for Generating a User Interface

Automatically) [49] for generating the UI from
TRIDENT models. This approach can be consid-
ered as a non-UML proposal. However, most of the
ideas studied in TRIDENT were later included in
UML proposals.
Table 3

User interface model-driven development

Name Type Diagrams M

TRIDENT Non-UML Entity relationship diagrams

and activity chaining graphs

T

a

TERESA Non-UML CTT T

WISDOM Hybrid Use case diagram, class

diagram, activity diagrams and

CTT

B

p

p

UMLi UML Use case diagram, class

diagram and activity diagrams

U

m

IDEAS Hybrid Sequence diagrams, class

diagram and Statecharts

T

d

p

Our proposal UML Use case diagram, activity

diagrams and class diagram

T

p

p

TERESA (Transformation Environment for InteR-

activE System RepresentAtions) [53] is a tool
designed for the generation of UIs for multiple
platforms from task models designed with CTT.
CTT [19,23] is a tool based on the formal language
LOTOS for analysis and generation of UIs from
task models. CTT is a formal and visual language
for task specification in which temporal and
concurrency relationships can be specified. There
are four kinds of tasks in CTT: user tasks,
application tasks, interaction tasks and abstract
tasks (which are decomposed in concrete tasks).
CTT permits the description of complex UIs in
which multiple users and concurrent tasks can be
carried out. Although CTT is a powerful tool, we
have not adopted it in our framework CTT for task
modeling. Our framework is focused on simpler
interfaces based on WIMPs, and on an MDD
technique based on UML diagrams. Our UI

diagram has some similarities with the CTT tool.
Through this specialization of the use case diagram,
we might decompose tasks into subtasks which are
also described by means of user-interaction diagrams
to describe the dialogue model. We also make a
clear distinction between user tasks (the use case
and UI models), interaction tasks (the user-interac-

tion diagram) and application tasks such as database
handling in a different way from UI tasks.

Partially based on UML, WISDOM (Whitewater

Interactive System Development with Object Models)
[29,31,34,35] is a proposal for UI modeling. WIS-
DOM uses UML but the authors have also adopted
the CTT. The domain model captures the objects
and the business model describes each user task and
odels Technology References

ask and presentation models

nd UI prototypes

WIMP [25–27,49]

ask models and UI prototypes WIMP/Web [19,23,53]

usiness, domain, dialogue and

resentation models and UI

rototypes

WIMP/Web [29,31,34,35]

ser, task and application

odels

WIMP [30,38,54,55]

ask, presentation, domain and

ialogue models and UI

rototypes

WIMP [33,56,57]

ask, dialogue and

resentation models and UI

rototypes

WIMP

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720700
entities involved in such tasks. The business model
in WISDOM is represented by the UML use case
model and the domain model by a stereotyped class
diagram. Use case model is completed by activity
diagrams in order to describe the services that the
system offers its users. The design model offers a
gap between the application level and the UI. The
dialogue model is specified by means of CTT. In
WISDOM there are also interaction and presenta-
tion models. The presentation model describes the
UI with stereotyped constructors to describe the
structure and navigation through the objects. We
agree with WISDOM in the use of the use case
diagram as a starting point of the UI design. In
addition, a class diagram is also used in our
approach for describing objects interacting with
the user in the UI. However, in our approach the
task modeling is carried out with a specialized
version of the use case diagram and completed
by activity diagrams for dialogue modeling instead
of CTT.

Fully based on UML, UMLi [30,38,54] proposes
an extension of UML for UI modeling. UMLi aims
to preserve the semantics of existing UML con-
structors since its notation is built by using UML
extension mechanisms. Like our technique, the
scope of UML is restricted to WIMP interfaces. It
distinguishes between application and interaction
objects, as we do. In fact, our modeling technique is
focused on interaction objects. In our technique,
application objects are supposed to be modeled by
separate class diagrams in later steps. The user
model is represented in UMLi by the use case
model, the task model by activity diagrams, and
application model by class diagrams. There is a
distinction between concrete and abstract presenta-
tion models. The technique is concerned with UI
specification rather than generation of the UI.
UMLi distinguishes between freecontainers and
containers as presentation abstract elements, input-

ters and displayers for input and output data, editors

for input/output and actioninvokers representing
event handlers. UMLi is supported by ARGOi [55].
This work is very similar to ours in the adoption of
UML diagrams for UI modeling. However, the
extensions are different. In our case, we focus more
on the use case diagram and its specialization as
task model, and we introduce and handle new
concepts like inclusion and generalization between
use cases.

Finally, IDEAS (Interface Development Envir-
onment within OASIS) [33,56] is also a UML-based
technique for the specification of UIs in UML and
the OASIS (Open and Active Specification of
Information Systems) specification language [57].
The task model is based on sequence diagrams. The
domain model is the class diagram. The dialogue
model uses statecharts: transitions can model
several windows (dialogue interaction diagrams)
and internal transitions in each window. IDEAS can
also specify an abstract UI with components.
Therefore, this technique might be considered as
hybrid, through there are some similarities with
ours. The main similarity can be found in the
dialogue model in which several windows can be
described.

3. MDD for UI modeling

In this section we will summarize the kinds of
models that we propose in our MDD-based
technique. As we advanced in the introduction,
our MDD-based technique is based on the use of
specialized use case, activity and class diagrams.

Our MDD-based technique is inspired by a spiral
methodology of at least three iterations. Each
iteration involves the building of use case, UI,
user-interaction and UI-class diagrams, except for
the first iteration which only involves the descrip-
tion of the use case diagram and user-interaction

diagrams. In the second iteration, the system
designer reviews the original use case diagram to
produce the UI diagram. This refinement is achieved
by identifying the relationships between the use
cases in the user-interaction diagrams. In the third
iteration, the technique includes the generation of
UI-class diagrams and UI prototypes as a new step.
Each step of the methodology is supposed to be
increasingly applied in such a way that models can
be increasingly refined. Fig. 1 depicts the technique.

3.1. Use case diagram

Use case diagrams are used as a starting point for
UI design. Use cases are a way of specifying
required usages of a system. Typically, they are
used to capture the requirements of a system, that is,
what a system is supposed to do.

A use case diagram consists of a set of actors

(users and external systems) and use cases. The
relationships between actors and use cases are called
associations. They represent the set of tasks that the
user carries out in the system. Relationships
between actors are generalizations/specializations.

ARTICLE IN PRESS

Fig. 1. Steps to apply for the proposed technique.

J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 701
An actor p is more general than an actor q whenever
q can interact with the system as p and, additionally,
it can interact in more cases.

In order to design a prototype of the UI, the use
case diagram should include the system actors, and
for each actor it should include the set of (main)
tasks in which the actor participates together with
generalization/specialization relationships between
actors. Include and generalization/specialization

relationships between use case are omitted in the
use case diagram since they will be described in the
UI diagram.

From the point of view of UI modeling, the use
case diagram can be considered as a high-level

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720702
description of the system main windows of each user
or group of users together with external systems
providing services in each task.

3.2. User-interaction diagrams

The second modeling technique that we use in our
framework is the activity diagram. In UML, use
cases can be described through activity diagrams
which specify the interactions between the actor and
the system and the changes of state of the system
and the communications with their environment.
Activity diagram can also include possible varia-
tions of the basic behavior, including exceptional
behavior and error handling. However, we need to
specialize the activity diagrams for UI modeling in
the following sense.

Our activity diagrams include states and transi-

tions. The states represent data output actions/data

requesting, that is, how the system responds to user
interactions showing data (or requesting them).
Transitions are used to specify when the user can
introduce data or interact with the system, and the
corresponding event is handled. Transitions can be
conditioned, that is, the event handling is controlled
by means of a boolean condition, which can be
referred to data/business logic or a previous user

interaction. In other words, it is possible more than
one transition from a state, and which of them will
run will depend on data/business logic or the
previous user choices. We call user-interaction

diagrams to this kind of activity diagrams used for
dialogue modeling.

Therefore, user-interaction diagrams are graphs
linking states by means of transitions, which are
arrows connecting an initial state and a final state.
Initial (resp. final) state is the starting (resp. end)
point of the diagram. Each state represents data
output (and input request) and transitions represent
actor interactions (user’s events). Transitions are
labeled by means of conditions/events, representing
the boolean conditions to be held and the events to
be achieved for the state change. There can be
diamonds between transitions that describe alter-
native paths, depending on a boolean condition.

Once the actors and the use cases associated with
each actor are specified, the system designer should
provide, in a second step, a set of user-interaction

diagrams to describe each use case in the use case
diagram.

However, from a practical point of view, it is
convenient to use more than one user-interaction
diagram for describing a use case. That is because
the logic of a use case is usually too complex. A
user-interaction diagram can be deployed in several
user-interaction diagrams, in which a part of the
main logic is separately described. Therefore, user
interaction diagrams can include states which do
not correspond to data output, rather than repre-
senting sub-diagrams. In this case, the states are
called non-terminal states; otherwise, they are called
terminal states.

Now, it is sometimes desirable to be able to
combine the logic of the sub-diagrams and the main
logic. For this reason, we will use in the main user-
interaction diagram transitions with conditions
which can be referred to the logic of the sub-
diagrams.

3.3. UI diagrams

Once we have obtained the use case diagram
together with a set of user-interaction diagrams,
some of the user-interaction diagrams will corre-
spond to use cases and others to states of use cases.
Now, it could be useful to have a new version of the

use case diagram, in which one could know what are
the main user-interaction diagrams, that is, which are
the user-interaction diagrams corresponding to use
cases, and which are the secondary user-interaction

diagrams, definitively, which are the states of
use cases. For this reason, we will build a new
version of the use case diagram, called UI diagram

as follows.
The UI diagram contains the same actors and use

cases of the use case diagram. In addition, it will add
new use cases. The new use cases are obtained from
the non-terminal states of the user-interaction

diagrams. The system designer can decide to include

all the non-terminal states or not depending on the
number of windows that (s)he wishes.

In other words, the UI diagram is supposed to
contain the set of windows of the system. Therefore,
the system designer selects those that will have its

own window from the set of non-terminal states.
Those non-terminal states not included in the UI

diagram are supposed to be described separately
because the logic was too complex to be described in
a unique user-interaction diagram. However, they
will share the same window as the main interaction.

In order to connect use cases, we will use the
include or generalization use case relations. Inclusion
and generalization use case relationships can be
detected by comparing user-interaction diagrams.

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 703
3.4. Inclusion and generalization relationships

Firstly, the user-interaction diagrams can be
compared by means of an inclusion relationship.
This is the case when a user-interaction diagram
contains as one of the states another user-interac-
tion diagram. However, inclusion means that the

logic of the included state is not modified, that is,
neither states nor transitions of the main user-
interaction diagram refers to the included one. This
typically occurs when the main use case defines its
own logic using the included use case as a piece of
behavior, but it does not ‘‘access’’ to the logic of the

included use case. The inclusion relationship can be
considered as a similarity relationship between use
cases.

Secondly, the user-interaction diagrams can be
compared by means of generalization/specialization

relationships. This is a more complex case that
corresponds with the one in which a use case/user
interaction modifies the logic of another use case/

user interaction by adding new states or transitions,
or changes some states or transitions of another use

case/user interaction. Basically, both use cases are
similar; they share some elements that could be
replaced/rewritten; in other words, these use cases
follow the same pattern, and one of them can be
reused to describe/implement another.

Here, we have to assume that terminal states and
transitions of user-interaction diagrams can be
compared by means of a (partial and reflexive)
replacement relationship L. That is, (terminal) states
s; s0 can be compared with a relationship sLs0, or
two transitions l; l0 can be compared with a
relationship lLl0 in such a way that s0 can be
replaced by s or l0 can be replaced by l, respectively.
The replacement relationship can express similar
semantics (appearance or behavior). The replace-
ment relationship is decided by the system designer.
It typically refers to data output actions and input
events which are similar from the appearance or
behavior point of view. For instance, a user
selection from a list of two columns can be replaced
by means of a user selection from a list of three
columns, or a click in a button called ‘‘accept’’ can
be replaced by a click in a button called ‘‘confirm’’.
Finally, conditions can be (for instance) replaced
whether one of them is more restrictive than the
other.

The replacement relationship induces a replace-

ment relationship on user-interaction diagrams.
For instance, two user-interaction diagrams that
describe the dialogue of the user with UI compo-
nents in which the user selects from the lists and
accepts/confirms are similar and therefore each one
can be replaced by each other. A user-interaction
diagram a0 can be replaced by a if the states and
transitions of a0 can be replaced by the states and
transitions of a. Obviously, it also induces a
replacement relationship between non-terminal
states.

The replacement relationship defines a similarity

relationship where some elements are replaced
following the replacement relationship and new
elements are added. This similarity relationship is
represented by the generalization/specialization re-

lationship between use cases.
The generalization/specialization relationship bet-

ween user-interaction diagrams captures two cases:
�
 When the logic of an included use case is
modified by adding states and transitions in the
main user-interaction diagram referred to the
included user-interaction diagram.

�
 When the user-interaction diagram of a non-
terminal state of a user-interaction diagram can
be replaced by means of another user-interaction
diagram.

In practice, both cases of generalization/specializa-

tion can be combined, that is, a user-interaction
diagram a generalizes a user-interaction diagram a0

whenever there exists a state a00 of a0 such that a

generalizes (in some of the cases above) a00.
In other words, the generalization/specialization

of use cases allows to build new use cases
with a more complex logic containing the
specialized use case, by adding transitions and
states or modifying the existent ones. However,
the inclusion allows to build new use cases with a
more complex logic but without adding or modify-
ing the states and transitions of the included use
case.

Obviously, some user-interaction diagrams may
not be compared through replacement and inclusion
relations, that is, they do not describe ‘‘similar’’
activities. Nevertheless, some user-interaction dia-

grams can be compared through a combination of
generalization/specialization and inclusion. In this
case, intermediate user-interaction diagrams might
be defined by decomposing the user-interaction

diagrams in several steps, in such a way that the
original user-interaction diagrams can be compared
through a chain of relationships.

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720704
3.5. UI-class diagram and UI prototypes

The next step of our model-driven technique
consists of the building of a class diagram for UI
components, the so-called UI-class diagram. In
addition, from the UI-class diagram, rapid UI

prototypes can be built with the support of a CASE
tool in order to define the preliminary layout of the
UI prototypes.

The UI diagrams obtained in the previous state
give us the main windows. Each use case connected
to an actor can be converted into a window.
Whenever an actor is connected to more than
one use case, it can be considered as a window
which contains (i.e opens) each window of each
use case. A possible solution would be to consider
a menu in the actor window from which each
window for each task could be opened, or in more
concise solutions, avoiding pop-up windows, a
frame-based window would handle more than one
window.

In addition, in the user-interaction diagrams

obtained from use cases, we have also described
input and output components for data output and
request, and user events. They give us the UI
components for each window.

Regarding the use case relationships in the UI

diagram, inclusion between use cases has been
considered as separate windows for specific tasks.
Therefore, we can use the same previous solutions: a
frame-based window system or a new window for
each included use case. For generalization/speciali-
zation relationships, windows for use cases can be
reused by using the inheritance relationship. In an
object-oriented language, class inheritance can be
used for inheritance of the layout and behavior of
class windows. The replacement relationship could
be solved by rewriting UI components in subclasses,
and the dialogue model could be modified in
subclasses by method rewriting.

3.6. Concrete modeling with the WIMP Java

swing package

Now we would like to give precise correspon-
dence between our models and the Java swing

package. We have chosen this package due to the
wide acceptance of this technology (applet, frames,
and event-handlers). This correspondence can be
viewed as a concrete modeling of our abstract

modeling technique explained in previous sections.
It provides a natural implementation of some of the
concepts presented. We believe that we could adapt
our technique to other UI technologies with little
effort. The main difference new UML stereotypes

for both input and output components, and making
similar mappings between use cases and other kinds
of user’s windows.

Although we assume that the reader knows the
basic behavior of Java swing classes, we would like
to remark some concepts used in our mapping.
Firstly, let us consider two kinds of window
interfaces: applet and frame. A frame can include
in the window area UI components such as buttons,
labels, text areas and so on, and it can invoke other
frames from it. An applet can only contain UI
components in the window area. Therefore, frames
will be used for the building of more complex UIs
where several tasks can be done. Some of these UI
components could be visible/enabled and disabled
according to the executed tasks. We use inheritance
between frames (and applets) assuming that it
implies inheritance of behavior but not necessarily
of appearance (inheritance requires recomposing the
layout of UI components). Table 4 summarizes the
rules for the Java swing package.

4. A UI modeling example

To illustrate our MDD-based technique, in this
section we will explain a simple IBS model.
Considering this scenario, next sections will describe
those steps that should be followed to develop a UI
project by using our particular view of use case
diagrams, UI diagrams, user-interaction diagrams

and UI-class diagrams.

4.1. Use case diagram

In the IBS example, there are three actors: the
customer, the ordering manager, and the adminis-
trator. A customer directly makes the purchases by
the Internet, querying certain issues of the product
in a catalogue of books before making the purchase.
The manager deals (total or partially) with custo-
mer’s orders. And finally, the system’s administrator
can manage the catalogue of books by adding
and eliminating books in the catalogue or modi-
fying those already existing. The administrator can
also update or cancel certain characteristics of an
order or those orders fulfilling certain searching
criteria.

As first step, we identify the main task to be
carried out by each user that correspond with the

ARTICLE IN PRESS

Table 4

Rules for a Java UI design

Rule Section Description

r1. Actors Each actor representing a user in the user-interface diagram is an applet or frame. When only one use case

is connected to an actor, and the use case has no inclusions, the actor and the use case can be represented

by means of the same applet. Otherwise, the actor is a frame

r2. Use cases Each use case of the user-interface diagram is a frame, except when is the only connected to an actor and

has no inclusions; in the latter case, it is an applet. When it is a frame, it is invoked from the frame of the

actor, or from the frame of the use case when it is included

r3. Generalization

and actors

The generalization relationship between two actors p and q (p generalizes q) corresponds with inheritance

of the applet or frame represented by q from the applet or frame representing p

r4. Generalization

and use cases

The generalization relationship between two use cases u and w (u generalizes w) corresponds with

inheritance of the applet or frame of w from the applet or frame of u

r5. hhincludeii The hhincludeii relationship between two use cases u and w (u includes w) corresponds with the invocation

from the frame of u of the frame of w

r6. States Each state of the user-interaction diagram necessarily falls into one of the following two categories:

terminal states or non-terminal states. A terminal state is labeled with a UML stereotype representing a

Java output UI component (stereotyped states). A non-terminal state is not labeled, and it is described by

means of some user-interaction diagram

r7. Transitions Each transition in the user-interaction diagrams can be labeled by means of conditions or UML stereotypes

with conditions. The UML stereotypes represent Java input UI components. The conditions represent use

choices or data/business logic

r8. Replacement

relationship

The replacement relation is decided by the system designer. Basically, stereotyped states can be replaced

if the Java output UI component can too. Similarly, stereotyped interactions can be replaced if the Java

input UI components can too

r9. States, non-

terminal

The user-interface diagram can specify hhincludeii or generalization relationships between the non-

terminal state and the use case. We can follow these rules: (a) In the hhincludeii relationship case, the non-

terminal state is also a frame. It contains the Java UI components in the associated user-interaction

diagram; (b) in the generalization relationship case, the non-terminal state is also an applet or frame

containing the Java UI components in the associated user-interaction diagram, but the use case also

contains these UI components

r10. Conditions The conditions of the transitions are not taken into account for the UI design

Fig. 2. Use case diagram of the IBS example.

J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 705
main windows. This information is described with a
use case diagram containing the identified actors of
the system (see Fig. 2). In our case study, the actors
are the Customer, the Manager and the Admin-
istrator, and the main tasks are purchase,
manage orders, manage partial orders,
manage catalogue, update orders and up-
date partial orders.

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720706
4.2. User-interaction diagrams

Once the use case diagram has been described, the
designer of the system specifies each use case by
means of one or more user-interaction diagrams. As
we have advanced before, each use case will
correspond with a window. Therefore, user-interac-

tion diagrams will describe the dialogue model of
such window.

In our case study we have adopted a concrete
modeling using the Java swing package following
the guidelines defined in the previous section. In the
case study, four Java UI components are used:
JTextField, JList, JLabel and JButton for
widgets and frames for windows.

UI components can be classified as input (a text
area or a button) and output components (a label or
list). Input/output components are associated with
terminal states and transitions by using the appro-
priate stereotype. For instance, the stereotypes
JTextField, JList, JLabel are associated with
states and the stereotype JButton with transitions.
Table 5 summarizes the features of the used UI
components.

Fig. 3 shows the user-interaction diagram for the
purchasing process together with a set of sub-
diagrams. The main user-interaction diagram is
UI_Purchase. The model shows how the
customer begins the purchasing process by query-
ing, adding or removing articles from the shopping
cart. After a usual purchasing process, the shopping
system requests the customer a card number and a
PIN (i.e. card control code) to carry out the
shipment.

The user-interaction diagram UI_Purchase is
composed of three states. Two of them are terminal
states, since they correspond to graphical elements.
They are stereotyped (hhJTextFieldii) and la-
beled by a text related to the graphical element. The
other state has been described in a separate user-

interaction diagram. In general, the name of a
Table 5

Graphical components’ features

Java classes Stereotypes Sections Input/output

JButton hhJButtonii Transitions Input

JLabel hhJLabelii States Output

JTextField hhJTextFieldii States/transitions In/out

JList hhJListii States Output

JFrame None Use cases In/out
separate user-interaction diagrams is the same as
the name of the state, in this case Manage
shopping cart (i.e. UI_ManageShoppingCart
in Fig. 3). In the UI_ManageShoppingCart user-

interaction diagram, the Query catalogue and
Shopping cart states are also described in
separate user-interaction diagrams.

States of user-interaction diagrams can be stereo-
typed or not. Stereotyped states represent terminal
states, which can be labeled by hhJTextFieldii,
hhJListii and hhJLabelii stereotypes.

Transitions can be labeled by means of stereo-

types, conditions or both. For instance, a button is
connected with a transition by using a hhJButtonii
stereotype, and the name of the label is the name of
the button. For example, a Show cart transition
stereotyped as hhJButtonii will correspond with a
button component called ‘‘Show cart’’.

Conditions can represent user choices or business/

data logic. The first one is a condition of the user’s
interaction with a UI component (related to button
or list states), and the second one is a data/business
logic condition.

For example, in our case study the selections from
a list are modeled by conditions: in the UI_Query-
Catalogue user-interaction diagram the list
Results is modeled by a hhJListii state and a
[Selected article] condition detects when an
element of the list is selected. Fig. 3 shows some
transitions (p.e., [Close], [Exit] or [Pro-
ceed]) that correspond with conditions of the user

choice type. The [Exit] output transition of the
Manage shopping cart state means that the user
has pressed a button called Exit, which has been
defined in the separate UI_ManageShopping-
Cart user-interaction diagram. Nevertheless, the
[cart not empty] condition is a data/business

logic condition.
The usual way of ‘‘condition/event’’ transition

can connect (non-) terminal states to (non-) terminal
states. A condition/event transition between states
means which condition should be present to trigger
the event. In our case study, an event can only be a
button. For instance, to remove an article from the
shopping cart, it must previously be selected from
the cart list (i.e. UI_ShoppingCart in Fig. 3). In
addition, boolean conditions can be used in transi-
tions from non-terminal states to other states.
This particular kind of boolean conditions as used
to control the logic of the secondary user-interac-
tion diagram into the main user-interaction dia-
gram. There are two cases. The first case when the

ARTICLE IN PRESS

Fig. 3. The whole user-interaction diagram of the Purchase use case.

J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 707
boolean condition refers to a ‘‘exit condition’’ of the
sub-diagram. For instance, the [Exit] transition
from Query catalogue refers to the exit button
clicked when the user closes the Query catalo-
gue window. However, the [Selected arti-
cle] condition in the transition triggered from
Query catalogue state is not an exit condition
but an internal transition on UI_QueryCatalogue
diagram which is checked from outside. It makes
UI_ManageShoppingCart to modify the logic of
UI_QueryCatalogue. In other words, the logic of
UI_ManageShoppingCart ‘‘interrupts’’ the logic
of UI_QueryCatalogue.
4.3. UI diagram

Once user-interaction diagrams have been de-
scribed, the system designer proceed to build the
UI diagram. This kind of diagram contains new use
cases which are some non-terminal states of the user
interaction diagrams. In addition, the system
designer has to identify use case relationships in
the new UI diagram as follows.

4.3.1. Include relationships

Let us consider the purchasing process described
in the previous user-interaction diagrams.

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720708
Purchase use case is a window that includes a
non-terminal state Manage shopping cart. This
state is described by means of a separate user-
interaction diagram. In addition, the logic of this
state is not modified in the UI_Purchase user
interaction diagram. It integrates the logic UI_
ManageShoppingCart diagram by checking
which buttons (i.e. Exit and Proceed) the user
pressed when (s)he exited from Manage shopping
cart state. This kind of checking on ‘‘exit

conditions’’ does not modify the logic of the
included use cases. Therefore, that use case
could be related by hhincludeii relationship to the
main use case. However, the system designer has
decided to consider only a window for the tasks of
Purchase and Manage shopping cart and an
additional window for Shopping chart task
occurring in the user interaction diagram UI_
Purchase process

Customer

Shopping c

<<Include>>

Purchase

Fig. 4. A user-interface diagram

Administrator

Wi

Query catalogue by administrator
Modify article

Add

Fig. 5. A piece of the user interfa
ManageShoppingCart. For this reason, there
are only one inclusion relationship from the
Purchase use case to Shopping cart use case
(see Fig. 4).

The system designer has also identified an
inclusion relationship between Manage catalo-
gue and Withdraw article, Modify article
and Add article use cases (Fig. 5). Here, four
windows can be optionally opened (depending on a
menu) from the Manage catalogue window. In
addition, the Administrator identification
window is mandatorily opened from the Manage
catalogue window in order to carry out the
system’s administrator tasks.

4.3.2. Generalization relationships

In order to illustrate the generalization/speciali-
zation relationship we will focus our attention to
Query catalogue

Confirm remove article

art

<<Include>>

for the purchasing process.

thdraw article

<<Include>>

Manage catalogue

 article

<<Include>>

<<Include>>

<<Include>>

Administrator identification

Administrator

ce of the administrator side.

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 709
three use cases: Purchase, Query catalogue
and Query catalogue by administrator. In
previous sections we have identified two cases of
generalization/specialization.

The first case can be identified by means of the
Query catalogue and Manage shopping cart
states. Here the UI_Purchase user-interaction
diagram contains a state (use case) Manage shop-
ping cart which specializes Query Catalogue
in the following sense. The UI_QueryCatalogue
user-interaction diagram describes how to query the
catalogue of the IBS by introducing the searching
criteria and showing the results. However, the
UI_ManageShoppingCart user interaction dia-
gram can interrupt the querying process by adding
the searched items to the shopping cart. It is
specified by adding the button Add to cart as
transition from (and to) Query catalogue with
the condition [Selected Article]. Hence the
logic of UI_QueryCatalogue is modified in
UI_ManageShoppingCart diagram, and we
can identify a specialization relationship between
Manage shopping cart and Query Catalogue
use cases. However, the system designer has decided
to consider a unique window for Purchase and
Manage shopping cart. Therefore, the general-
ization relationship is defined between Purchase
and Query catalogue. Furthermore, it is sup-
posed that there will be a window for Query
catalogue from which Purchase inherits.

The second case is the relation between Query
catalogue and Query catalogue by admin-
istrator use cases. Here, the administrator is
supposed to have higher privileges for querying
Customer

Query catalogue

Confirm remove article

Shopping cart

Purchase

<<Include>>

Query catalogue by administrato

<<Include>>

Purchase Query Catalogue

Fig. 6. A piece of the use
the catalogue and, therefore, the user-interaction
diagram of the Query catalogue by adminis-
trator (see Fig. 7) specializes the UI_QueryCa-
talogue user-interaction diagram in the following
sense.

The states of the UI_QueryCatalogueby
Administrator diagram corresponding with the
searching criteria and results are modified with
respect to the UI_QueryCatalogue diagram. The
fields of searching and results are supposed to be
different but the logic is similar. In other words, the
Query catalogue use case can be replaced by
Query catalogue by administrator use case
since the states can be replaced. In this case we can
identify a generalization relationship between them.
Analogously, Withdraw article and Modify
article use cases combine both kinds of specia-
lization, once they have specialized the Query
catalogue by administrator use case in the
same way as Purchase specializes Query cata-
logue use case, and indirectly specializes Query
catalogue use case (see Figs. 6 and 7).

The complete UI diagram of our case study can be
seen in Fig. 8.

4.4. UI-class diagrams and UI prototypes

Once the UI diagram has been built and a set of
user-interaction diagrams has been obtained, now we
can generate a UI-class diagram.

In our case study, the UI-class diagram is built
from Java swing classes. Use cases are translated
into classes with the same name as these use cases.
The translated classes specialize a Java Frame class.
Add article

Modify article
r

Withdraw article

Manage catalogue

<<Include>>

<<Include>>

<<Include>>
Administrator

r-interface diagram.

ARTICLE IN PRESS

<<JTextField>>
Searching criteria for Administrator

<<JButton>>
 Search

<<JButton>>
 Clear

<<JList>>
Resutls for Administrator

<<JButton>>
 Clear

[Selected article]

<<JButton>>
 Exit

<<JButton>>

UI_Query Catalogue by Administrator

 Exit

Fig. 7. The user-interaction diagram for the query catalogue by administrator.

J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720710
The components of the applet or frame (use case)
are described in the user-interaction diagrams.
A terminal state is translated in the class (frame)
as a Java swing attribute represented by the
stereotype of the state. For example, those terminal
states stereotyped as hhJTextFieldii are trans-
lated into a JTextField attribute in the UI-class

diagram. Fig. 9 shows the UI-class diagram of the
customer’s side.

The UI-class diagram contains five windows,
four of which directly specialize the Java JFrame

class: the GUI_Customer class, the GUI_Query_
catalogue class, the GUI_Confirm_remove_
article class and the GUI_Shopping_cart
class. The other class (i.e. GUI_Purchase class)
inherits from the Java JFrame class through the
GUI_Query_catalogue class. These five classes
correspond to those four use cases at the customer’s
side in the UI diagram together with the customer
actor. Furthermore, note how the stereotyped states
and transitions in the user-interaction diagrams of
the purchase process are translated into Java swing

attributes in the UI-class diagram. The stereotyped
name of a transition or state is translated into the
appropriate Java swing class attribute. For example,
the hhJButtonii stereotype of the Proceed
transition that occurs in the UI_ManageShop-
pingCart user-interaction diagram (see Fig. 3) is
translated into a JButton attribute.

Finally, rapid UI prototypes can be obtained
from the UI-class diagram. Such prototypes are
draft versions which should be improved and
checked by using user centered design and user
evaluation methods.
Fig. 10 shows a visual result of the Purchase
window. Note how the Purchase window is very
similar to the Query Catalogue window, except
that the second one includes three additional
buttons. This similarity between windows was
revealed in the UI diagram as a generalization
relationship between use cases: between the Query
catalogue and Purchase use cases. In the IBS
final prototype, the customer will always work on a
Purchase window opened from the Customer
window, never on a Query Catalogue window,
though the former inherits the behavior of the latter
(i.e. by the relation of generalization). Let us remark
that the Shopping cart window will be invoked
from the Purchase window, and Purchase
inherits from Query catalogue window.

The Shopping Cart window (Fig. 10) will be
opened when the Show Cart button is pressed on
the purchase process (Fig. 10). In Fig. 8 note how in
the UI diagram both windows are associated by
means of an inclusion relation between use cases.
On the other hand, the two warning windows
(Fig. 10) are also associated: the Remove article
window and the Shopping Cart window, and the
Proceed window and the Purchase window.

Let us remark that user-interaction diagrams
reveal how UI components are enabled and disabled
depending on the user interaction. For instance,
given a state, only those buttons representing
transitions from the state will be enabled.

For space reasons, we have included here a part
of the case study. A complete version of the project
is available at http://indalog.ual.es/mdd/
usecases.html.

http://indalog.ual.es/mdd/usecases.html
http://indalog.ual.es/mdd/usecases.html

A
R
TIC

LE
IN

PR
ES

S

Customer

Purchase

Shopping cart

Query catalogue

Ordering Manager

Confirm remove article

Manage orders

Manager identification

Manage partial orders

Query catalogue by administrator

<<Include>>

Confirm withdraw article

Add article

Modify article

Withdraw article

Administrator identification

<<Include>>

Manage catalogue

Administrator

Confirm modification

Notify existence

Confirm add article

<<Include>>

<<Include>>

<<Include>>
Notify incorrect identification

<<Include>>

Update orders

<<Include>>
<<Include>>

<<Include>>

<<Include>>

<<Include>>

Update partial orders

Cancel partial orders

<<Include>>

Cancel orders

<<Include>>

Cancel orders by criteria

<<Include>>

<<Include>>

Confirm cancel orders
Confirm cancel item

<<Include>>

Notify incorrect identification

Administrator identification

<<Include>>

Notify incorrect identification

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>Confirm partial order
Notify invoice exists

Confirm withdraw article in stock

<<Include>>

<<Include>>

<<Include>>

Confirm invoice

Notify no invoice exist

Notify invoice exists

<<Include>>

User Interface Diagram

Fig. 8. The Internet shopping user-interface diagram.

J
.M

.
A

lm
en

d
ro

s-J
im

én
ez,

L
.

Irib
a

rn
e

/
J

o
u

rn
a

l
o

f
V

isu
a

l
L

a
n

g
u

a
g

es
a

n
d

C
o

m
p

u
tin

g
1

9
(

2
0

0
8

)
6

9
5

–
7

2
0

7
1
1

ARTICLE IN PRESS

JFrame

-remove_article_Label : JLabel
-accept_Button : JButton
-cancel_Button : JButton

GUI_Confirm_remove_article

<<actor>>
GUI_Customer

-proceed_Button : JButton
-show_cart_Button : JButton
-add_to_cart_Button : JButton
-next_Button : JButton
-back_Button : JButton
-purchase_Button : JButton
-input_card_Label : JLabel
-input_card_TextField : JTextField
-input_pin_Label : JLabel
-input_pin_TextField : JTextField

GUI_Purchase

-shopping_cart_Label : JLabel
-selected_articles_Label : JLabel
-remove_article_Button : JButton
-close_Button : JButton
-selected_articles_ScrollPane : JScrollPane
-selected_articles_List : JList
-valueCart : Vector

GUI_Shopping_cart

-searching_criteria_Label : JLabel
-results_Label : JLabel
-exit_Button : JButton
-search_Button : JButton
-clear_Button : JButton
-results_ScrollPane : JScrollPane
-results_List : JList
-searching_criteria_TextField : JTextField
-Results : Vector

GUI_Query_catalogue

GUI_Class Diagram

Fig. 9. A UI-class diagram obtained from user-interface diagrams and user-interaction diagrams.

J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720712
5. Formalization of the technique

In this section we will formalize the described
technique. The interest of this formalization is
double:
�
 A MDD technique that involves multiple per-
spectives can lead to inconsistent models. Model
should be integrated and consistent. Our formal
definition expresses when the UI and user
interaction diagrams are consistent or well-
formed. Such consistence proving can be con-
sidered as a model checking technique.

�
 Our technique goes towards the automatic gen-

eration of code from UML models. Therefore, a
formal translation of user-interaction diagrams

and UI diagrams into UIs is defined (in parti-
cular, this translation can be used to generate
UI-class diagrams).

Firstly, we will provide a formal definition of
well-formed UI diagrams. In particular, we will
define the include and generalization use case
relationships. We will also define a well-formed UI

diagram which follows some restrictions. In addi-
tion, we will provide an abstract definition of UIs,
and we will define two abstract relationships between

UI: inclusion and generalization. This will allow us to
define a generic transformation technique for UI

diagrams into a set of abstract UIs.

ARTICLE IN PRESS

Fig. 10. The applet windows of the customer’s side.

J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 713
Now, let us define a UI diagram as follows:

Definition 5.1 (UI diagram). A UI diagram

UID ¼ ðn;ACT ;UC; ;F; Þ

consists of: (i) a diagram name n; (ii) a finite set
ACT of actor’s names p; q; r; . . .; (iii) a finite set UC

of use cases u; v;w; . . .; (iv) and three relations ,
F and , where (1)
� ðACT � ACTÞ [ðUC �UCÞ; (2)

F � ACT �UC; (3) and � UC �UC. As
usual, we write p q, rather than ðp; qÞ 2 , and
analogously for F and .

Now, we formally define a use case as follows:

Definition 5.2 (Use case). A use case

u ¼ ðn;S;SI ; IS;OS;COND;!Þ

consists of:
(1)
 a use case name n;

(2)
 a finite set S of states which consists of:
(a) a finite set UC of use cases;
(b) a finite set SS of stereotyped states of the

form ðsn; pÞ where sn is a state name and
p 2 OS;

(c) three special states SP, the initial, final and
branching states;
(3)
 a finite set SI of stereotyped interactions of the
form ½C�=ðin; iÞ where C 2 COND, in is an
interaction name, and i 2 IS. The condition
½C� is optional;
(4)
 a finite set IS of input stereotypes i; j; . . .;

(5)
 a finite set OS of output stereotypes p; q; . . .;

(6)
 a finite set COND of boolean conditions

C;D . . .;

(7)
 a transition relation!� S � ðSI [CONDÞ �S.

As usual, we write A!
l

B rather than
ðA; l;BÞ 2!, where l can be ½C� or ½C�=ðin; iÞ.
In a user-interaction diagram we have two kinds
of states: stereotyped and non-stereotyped states.
The non-terminal states correspond with use cases.

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720714
Transitions are labeled with (conditioned) stereo-

typed interactions and conditions.

Notation: We denote by nameðuÞ the name of a
use case u. Also we denote the set of use cases—resp.
transitions—of a use case u as usecasesðuÞ—resp.
transitionsðuÞ. SIðuÞ—resp. SSðuÞ—denotes the
set of stereotyped interactions ðin; iÞ in u—resp.
stereotyped states ðsn; pÞ in u. Finally, we denote
by exitðuÞ the exit conditions of a use case u, defined
as the set of interaction names in on transitions

s !
½C�=ðin;iÞ

s0 together boolean conditions C of transi-

tions !
½C�

which go to the final state in the
use case u. Finally, we assume a (partial and

reflexive) replacement relation L defined for
stereotyped states, stereotyped interactions and
conditions.

The replacement relation L can be extended to
use cases, as follows:

Definition 5.3 (Replacement of use cases). Given use
cases u; v: vLu whenever ðs; l; tÞ 2! belongs to
transitionsðuÞ iff there exists ðs0; l0; t0Þ 2! of
transitionsðvÞ, such that s0Ls, t0Lt and l0Ll.

Now, we can define the inclusion and general-
ization relationship between use cases as follows:

Definition 5.4 (Use case inclusion). Given two
use cases u; v we say that u includes v if v 2

usecasesðuÞ.

Definition 5.5 (Use case generalization). Given two
use cases u; v we state that u generalizes v, if there
exists w 2 usecasesðvÞ such that wLu.

Therefore, the states and transitions of a more
general use case can be replaced in a particular use
case by more particular stereotyped states and
transitions. In addition, the more particular use
case can add new ones. Next, we will define the well-
formed use cases.

Definition 5.6 (Well-formed use cases). A use case u

is well-formed when:
(1)
 for all s!
l

t 2 transitionsðuÞ then l has the form
½C�=ðin; iÞ 2 SI iff
(a) s ¼ ðsn; pÞ, p 2 OS, or
(b) s 2 usecasesðuÞ and s generalizes u;
(2)
 for all v 2 usecasesðuÞ then there exists v!
l

t 2

transitionsðuÞ such that l has the form ½C� or
½C�=ðin; iÞ for every C 2 exitðvÞ.
following conditions:

Well-formed use cases are those fulfilling the
(1.a)
 an output component triggers an input inter-
action;
(1.b)
 input interactions are added in a more general
use case in order to obtain more particular
ones; and finally,
(2)
 the exit conditions of a non-terminal state
must be included in the main use case.
Now, a well-formed UI diagram includes well-
formed use cases, and the include and generalization

relationships between use cases in the well-formed

UI diagram correspond with the analogous relations
defined for use cases.

Definition 5.7 (Well-formed use interface diagram).
A well-formed UI diagram UID ¼ ðn;ACT ;
UC; ;F; Þ satisfies that:
(1)
 every u 2 UC is well-formed;

(2)
 for all u; u0 2 UC, u0 u if u generalizes u0;

(3)
 and for all u; u0 2 UC, u u0 if u includes u0.
Let us remark that the inclusion and general-
ization relationships between use cases in well-
formed UI diagrams are a subset of the same
relationships between use cases.

Now, we can formally define our transformation
technique which provides each UI diagram with a
set of UI components.

With this aim, we will provide an abstract
definition of UI and UI components. A UI has a
name and contains a set of UI components which in
particular can be UIs. UI components are stereo-
typed interactions and states which represent the
input and output UI components.

Definition 5.8 (User interface). A UI U ¼

ðn;W ; I ;OÞ consists of:
(1)
 a UI name n;

(2)
 a finite set W of UIs;

(3)
 a finite set I of stereotyped interactions ðin; iÞ;

(4)
 and a finite set O of stereotyped states ðsn; pÞ.
UIs can be compared by means of generalization
and inclusion relationships. The first one corre-
sponds with an inheritance relationship, and the
second one with a containment relationship.

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 715
Definition 5.9 (UI generalization). Given two UIs:
ðn;W ; I ;OÞ, ðn0;W 0; I 0;O0Þ, we say that ðn;W ; I ;OÞ
generalizes ðn0;W 0; I 0; O0Þ when:
(a)
 for all U 2W , there exists U 0 2W 0 such that U

generalizes U 0;

(b)
 for all i 2 I , there exists i0 2 I 0 such that i0Li;

(c)
 and for all o 2 O, there exists o0 2 O0 such that

o0Lo.
Definition 5.10 (UI inclusion). Given two UIs: U

and U 0, we say that U ¼ ðn;W ; I ;OÞ includes U 0 if
U 0 2W .

Finally, we define the transformation of a UI

diagram into a set of UIs.

Definition 5.11 (UI associated to a UI diagram).
Given a well-formed UI diagram UID ¼ ðn;ACT ;
UC; ;F; Þ, we define the UI associated to
UID, denoted by UIðUIDÞ, as the set fUIðpÞjp 2

ACT is a userg, where

UIðpÞ ¼ ðp;W ; I ;OÞ

where

W ¼ fUIðuÞjpFug [fUIðuÞjp0Fu; p �p0g;

I ¼+;

O ¼+

8><
>:

and

UIðuÞ ¼ ðnameðuÞ;W ; I ;OÞ

where

W ¼ fUIðvÞju vg;

I ¼ IðuÞ;where

IðuÞ ¼
S

v 2 usecasesðuÞ

and not u v

IðvÞ;

O ¼ SðuÞ;where

SðuÞ ¼
S

v 2 usecasesðuÞ

and not u v

SðvÞ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

where � denotes the transitive closure of the
relation .

Finally, we can prove the following result from
our transformation technique:

Theorem 5.1. The UI associated to a well-formed UI

diagram satisfies the following conditions:
(a)
 for all p; p0 users in ACT, p0 p then UIðpÞ

generalizes UIðp0Þ;
(b)
 for all u; u0 2 UC, u0 u then UIðuÞ generalizes

UIðu0Þ;

(c)
 for all u; u0 2 UC, u u0 then UIðuÞ includes

UIðu0Þ;

(d)
 for all p user in ACT and u 2 UC, pFu then

UIðpÞ includes UIðuÞ
Proof. (a) By definition UIðp0Þ ¼ ðp0;W 0; I 0;O0Þ
where W 0 ¼ fUIðu0Þjp0Fu0g [fUIðu0Þjp00Fu0; p0 �

p00g; I 0 ¼+ and O0 ¼+ and UIðpÞ ¼ ðp;W ; I ;OÞ
where W ¼ fUIðuÞjpFug [fUIðuÞjp000Fu; p �p000g,
I ¼+ and O ¼+. Now, if p0 �p then p0 �p000

and therefore W �W 0, I ¼ I 0 ¼+ and O0 ¼

O ¼+,concluding that UIðpÞ ¼ ðp;W ; I ;OÞ gener-
alizes UIðp0Þ ¼ ðp0;W 0; I 0;O0Þ.

(b) By definition UIðuÞ ¼ ðnameðuÞ;W ; I ;OÞ
where

W ¼ fUIðvÞju vg; I ¼ IðuÞ,

IðuÞ ¼
[

v 2 usecasesðuÞ

and not u v

IðvÞ; O ¼ SðuÞ,

SðuÞ ¼
[

v 2 usecasesðuÞ

and not u v

SðvÞ.

and UIðu0Þ ¼ ðnameðu0Þ;W 0; I 0;O0Þ where

W 0 ¼ fUIðv0Þju0 v0g; I 0 ¼ Iðu0Þ,

Iðu0Þ ¼
[

v0 2 usecasesðu0Þ

and not u0 v0

Iðv0Þ; O0 ¼ Sðu0Þ,

Sðu0Þ ¼
[

v0 2 usecasesðu0Þ

and not u0 v0

Sðv0Þ.

In addition, if u0 u then there exists w 2

usecasesðu0Þ such that wLu. Now, we can proceed
by induction in the number of included use cases of

u, that is, in the number of elements of the set iucðuÞ

defined as iucðuÞ ¼ usecasesðuÞ
S

v2usecasesðuÞiucðvÞ in
order to prove that UIðuÞ generalizes UIðwÞ.

Base case: iucðuÞ ¼+. That is, the number of
included use cases of u is zero. Then u does not
include any v; and therefore W ¼+, I ¼ SIðuÞ and
O ¼ SSðuÞ.

Now, given that wLu then: ðs; l; tÞ 2! belongs to
transitionsðuÞ iff there exists ðs0; l0; t0Þ 2! of
transitionsðwÞ, such that s0Ls, t0Lt and l0Ll.

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720716
Therefore for every i 2 SIðuÞ there exists i0 2

SIðwÞ such that i0Li, and analogously for SSðuÞ;
therefore UIðuÞ generalizes UIðwÞ.

Inductive case: iucðuÞa+. That is, the number of
included use cases of u is greater than zero. We
can reason that if wLu then, by definition, for every
use case v of u there exists a use case v0 of w such
that v0Lv.

Now, the number of included use cases of v is
strictly smaller than the number of use cases of
u : iucðvÞoiucðuÞ.

Now, we can reason by induction hypothesis that
UIðvÞ generalizes UIðv0Þ. Reasoning analogously to
the base case for every i 2 SIðuÞ there exists i0 2

SIðwÞ such that i0Li, and the same for SSðuÞ.
Therefore we can conclude that UIðuÞ generalizes

UIðwÞ.
Finally, we can reason that UIðuÞ generalizes

UIðwÞ, and UIðu0Þ includes UIðwÞ, trivially by
definition, and therefore, by definition, UIðuÞ

generalizes UIðu0Þ. The cases (c) and (d) are trivially
true by definition. &

6. Conclusions and future work

In this paper, we have studied a MDD technique
for modeling WIMP-based UIs. We have defined a
new kind of UML diagram (i.e. the UI diagram)
which specializes the use case diagram for UI
modeling. In addition, we have shown how to
describe use cases by means of specialized activity
diagrams (user-interaction diagrams), in order to
specify the dialogue model of each UI. Finally, we
have shown how to generate class diagrams for UI,
and how to build draft UI prototypes for the UI.

6.1. Advantages of the proposed technique

Our technique for UI modeling is based on UML,
that is, it adopts UML diagrams for describing UIs.
Some UML diagrams are adapted to UI but it is not
a real extension. Firstly, the proposed technique
specializes the use case diagram for UI representa-
tion, maintaining the intended semantics of use cases

but interpreted in the context of UIs. Secondly, it
introduces new stereotypes for the class and activity
diagrams preserving the same structure and seman-
tics. It allows the UML system designers to adopt
our technique with a short training, and a UML
CASE tool to be used for our technique.

The most relevant extension of UML in our
proposal is the definition of a new diagram called UI
diagram, built from the UML use case diagram. The
adoption of the UML use case model for UI
modeling has already been discussed in other works
[31,58–61]. Use cases, as the ‘‘starting point’’ of the
UI modeling, are useful for a ‘‘high-level’’ descrip-
tion of the UI. However, it is well-known that use
case diagrams may include some use cases referred
to parts of the system not related to UIs, such as
classes, human tasks, components of other systems
interacting with ours, and so on; even on decom-
posing use cases through the include and extend
relationships, one could specify particular parts of
the system which are not related with the UI: data
logic can be specified in the use case diagram. For
this reason, a specialized version of the use case
model has been adopted.

The UI diagram introduces some use case
diagram mechanisms (inclusion and generalization

between use cases) in order to describe the structure
of the UI: main and secondary tasks/windows, and
similarity between tasks. Similarity analysis between
tasks is something new with respect to other
proposals based on UML [29–31,34,35,38,54].
Similarity analysis is one of the most relevant
contributions of this paper. Inclusion expresses
similarity in terms of ‘‘pieces’’ of user interaction
with the UI which are shared by some tasks.
Generalization is a more complex kind of similarity
related to two concepts: reuse+replacement of user
interactions and UI components.

One of the advantages of our proposed technique
is that it offers a separation between application level

and UI. Each task specified in the user-interface

diagram is supposed to be carried out by a UI: the
user introduces input data and the system replies
with output data. However, some system tasks can
be carried out at the application level, for instance:
the handling of databases, system requests to
external devices and so on, and such tasks are
specified out of the UI diagram. Our task model
(i.e. the UI diagram) only describes the tasks in
which the user participates. This task model is
completed by means of activity diagrams that
describe the user dialogue and the application level
tasks. Application level tasks can be described by
means of natural language in boolean conditions of
transitions in the user-interaction diagrams. In
addition, the UI diagram also represents actors
(i.e., system users) and use cases connected to actor
represent tasks to be carried out by each user.

Our technique describes the dialogue model by
means of a specialized version of the activity

ARTICLE IN PRESS

1http://www.mozilla.org/projects/xul/

J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 717
diagram. There are many works [32,36,39–42] that
suggest the adaptation of UML diagrams and the
activity and state diagrams for user dialogue
description. Our proposal works with WIMP UIs.
Therefore, the user dialogue consists of tasks in
which the user selects from a list, clicks in a button,
accepts/cancels, and so on. However, in the
dialogue model the UI can still represent the

adaptation to the user interaction in the following
sense: from a given state, it is possible to find visible/
enabled or disabled buttons, depending on the
operation. For instance, in the presented Internet
shopping system case study, ‘‘purchase’’ button is
disabled whenever the shopping cart is empty.

An interesting contribution to our paper is the
formalization of the proposed MDD-based model-
ing technique. Multiple perspectives of the same
system can be inconsistent, and a CASE tool should
detect failures on design due to inconsistencies. For
this reason a formal definition of the required
consistence properties is needed. Proving such
properties for a given modeling can be considered
as a model checking technique. In addition, our work
goes towards the definition of an automatic genera-

tion of code from UML designs. Automatizing is
only possible from a well-defined process. Our
technique has been formally specified in order to
define a model transformation of UML models into
a UI. In particular this transformation can be used
for generating the UI-class diagram. We have
presented the definition of well-formed UI and

user-interaction diagrams which are consistent with
each other. We have defined an abstract definition of

UIs and two relationships on them: inclusion and

generalization. Inclusion between two UIs means
that one of the UIs is the container and the other is
the contained. Generalization is equivalent to
inheritance between window classes. Like conclusion
of our formalization, we have proved that inclusion
between use cases in the UI diagram corresponds
with inclusion between UIs, and generalization
between use cases corresponds to inheritance.

6.2. Shortcomings of the proposed technique

The main limitations of the approach are two.
Firstly, we restrict our technique to WIMP

interfaces. We believe that our technique could be
extended to Post-WIMP interfaces based on hyper-

text with dynamic content or the handling of
adaptation and multi-modality. Dialogue models
for Web content have been studied in some previous
works [41,42,45–47]. Our intention is to extend our
work in the future by following the quoted
proposals.

Secondly, our proposed technique is only a piece
of a complete method (i.e. set of processes, notations
for steps, etc.) for UI design. In particular, the
layout part of the UIs is not covered by our
technique and therefore the technique does not
properly contribute to a complete UI design method.
Ergonomic criteria [2,14–16,48,49] are still crucial
for the usability of the UI. The main goal of the
proposed technique is the dialogue and UI modeling
in the framework of UML. In addition, the
proposed technique is useful for rapid prototyping
of UIs in modeling phases. However, such pre-
liminary design should be just a prototype, and we
recommend the system designer to improve and
check the prototypes by using user center design and

evaluation methods [17,18].

6.3. Extensions of the proposed technique

We plan to study how to integrate the UI view

with the data and business logic by using other types
of diagrams (sequence diagrams and class diagram
for application objects). Application tasks are
specified in the proposed technique by means of
boolean conditions but usually they will require
database interactions. Some kind of UML diagram
could be used for describing how the UI interacts
with database components.

On the other hand, the automatic verification of

UI specifications is also an interesting extension of
our work. Some properties [62] can be checked from
high-level specifications of UIs. Model checking
techniques can be used for that. There are many
interesting works in the field (see [62–67] for some
examples). One of the contributions of our paper is
the formalization of our technique, whose aim is in
particular to prove properties of consistence of the
developed models. We believe that some other
properties could be proved in our models by using
the proposed formalization.

Another extension of our work is the study of
XML-based representation of our modeling techni-

que. There are some interesting proposals like
XIML [50], UIML [51], UsiXML [52], Tere-
sa+XML [53], WebML [45] together with the UI
work by the W3 consortium [37] and Mozilla.1 The
aim of such proposals is to provide XML dialects

http://www.mozilla.org/projects/xul/

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720718
for UI specification. On one hand, XML-based
descriptions of UI layout and behavior allow the
system designers to improve their work: model
repositories, abstract UIs, patterns, and so on. On
the other hand, interoperability between UI tools is
mandatory for complex software architectures. We
believe that an XML dialect could be defined from
our models as future work.

Finally, we would like also to incorporate our

technique in a CASE tool in order to automatize the

MDD technique. Our technique has been extensively
used in student projects in the classroom. However,
the main tasks are done by hand for students due to
the lack of a CASE tool supporting our technique.
The tasks to be automatized are for instance the
generation of UI-class diagrams from user interac-
tion diagrams. This is a model transformation in
which each UI component is translated into an icon
class of the UI-class diagram and the corresponding
associations between system windows and widgets
could be obtained. Secondly, the generation of the
UI diagram could be supported by the CASE tool
with developer participation, that is, the CASE tool
should ask the developer which states of the user
interaction diagrams will be system windows and
which of them not. Finally, the CASE tool could
help to generate UI prototypes.

Acknowledgments

The authors would like to thank the anonymous
referees for their insightful comments and sugges-
tions that greatly helped them improve the contents
and readability of the paper. This work has been
partially supported by the EU (FEDER) and the
Spanish MEC under Grants TIN2005-09207-C03-
02 and TIN2007-61497.
References

[1] OMG, Unified Modeling Language Specification, Version 2.0,

Technical Report, Object Management Group hhttp://www.

omg.org/technology/documents/formal/uml.htmi, 2005.

[2] J. Nielsen, Usability Engineering, Academic Press, New

York, 1993.

[3] T.R.G. Green, Cognitive dimensions of notations, in:

Proceedings of the Fifth Conference of the British Computer

Society, Human–Computer Interaction Specialist Group

on People and Computers V, Cambridge University Press,

New York, NY, USA, 1989, pp. 443–460.

[4] E. Soloway, S. Iyengar, Empirical Studies of Programmers,

Human/Computer Interaction Series, vol. 1, Ablex Publish-

ing Corporation, Norwood, NJ, 1986.
[5] B.A. Myers, User interface software tools, ACM Transac-

tions on Computer Human Interaction 2 (1) (1995) 64–103.

[6] B. Myers, S.E. Hudson, R. Pausch, Past, present, and future

of user interface software tools, ACM Transactions on

Computer Human Interaction 7 (1) (2000) 3–28.

[7] G.R. Pfaff, User Interface Management Systems, Springer,

Berlin, Germany, 1985.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.

Stal, Pattern-Oriented Software Architecture, A System of

Patterns, vol. 1, Wiley, New York, 1996.

[9] M. Goldberg, D. Robson, Smalltalk-80: The Language

and its Implementation, Addison-Wesley, Reading, MA,

1983.

[10] J. Coutaz, PAC: an implementation model for dialogue

design, in: Proceedings of the second IFIP International

Conference on Human–Computer Interaction, INTER-

ACT’87, North-Holland, Amsterdam, 1987, pp. 431–437.

[11] J. Coutaz, Architecture models for interactive software, in:

Proceedings of the 1989 European Conference on Object-

Oriented Programming, ECOOP’89, 1989, pp. 383–399.

[12] L. Bass, R. Little, R. Pellegrino, S. Reed, R. Seacord, S.

Sheppard, The arch model: Seeheim revisited (version 1.0),

The UIMS Tool Developers Workshop, April, ACM

SIGCHI Bulletin 24 (1) (1991).

[13] J. Coutaz, Formal Methods in Human–Computer Interac-

tion, Software Architecture Modelling: Bridging Two

Worlds Using Ergonimics and Software Properties, Spring-

er, Berlin, Germany, 1998, pp. 49–73.

[14] M. McCurdy, C. Connors, G. Pyrzak, B. Kanefsky, A. Vera,

Breaking the fidelity barrier: an examination of our current

characterization of prototypes and an example of a mixed-

fidelity success, in: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, CHI ’06, ACM

Press, New York, 2006, pp. 1233–1242.

[15] J.A. Landay, SILK: sketching interfaces like krazy, in:

Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI’96, ACM Press, NY, USA,

1996, pp. 398–399.

[16] J. Lin, M. Thomsen, J.A. Landay, A visual language for

sketching large and complex interactive designs, in: Proceed-

ings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI’02, ACM Press, NY, USA, 2002,

pp. 307–314.

[17] K. Vredenburg, J.-Y. Mao, P.W. Smith, T. Carey, A survey

of user-centered design practice, in: Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems, CHI’02, ACM Press, NY, USA, 2002, pp. 471–478.

[18] J.-Y. Mao, K. Vredenburg, P.W. Smith, T. Carey, User-

centered design methods in practice: a survey of the state of

the art, in: Proceedings of the 2001 Conference of the Centre

for Advanced Studies on Collaborative Research, CASCON

’01, IBM Press, 2001, p. 12.

[19] F. Paternò, Model-Based Design and Evaluation of Inter-

active Applications, Springer, Berlin, Germany, 1999.

[20] P. Pinheiro da Silva, User interface declarative models and

development environments: a survey, in: Proceedings of the

International Workshop on Interactive Systems: Design,

Specification, and Verification, DSV-IS 2000, Lecture Notes

in Computer Science, vol. 1946, Springer, Berlin, Germany,

2000, pp. 207–226.

[21] S. Card, T. Moran, A. Newell, The Psycology of Human

Computer Interaction, Lawrence Erlbaum, Hillsdale, 1983.

http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720 719
[22] A. Newell, S. Card, The prospects for psycological science in

human–computer interaction, Human–Computer Interac-

tion 1 (1985) 209–242.

[23] G. Mori, F. Paternò, C. Santoro, CTTE: support for

developing and analyzing task models for interactive system

design, IEEE Transactions on Software Engineering (2002)

797–813.

[24] C. Janssen, A. Weisbecker, J. Ziegler, Generating user

interfaces from data models and dialogue net specifications,

in: Proceedings of the ACM Conference on Human Factors

in Computing Systems, INTERCHI’93, ACM Press, NY,

USA, 1993, pp. 418–423.

[25] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, I. Sacré, J.

Vanderdonckt, Architecture elements for highly-interactive

business-oriented applications, in: Selected Papers from the

Third International Conference on Human–Computer Inter-

action, EWHCI ’93, Springer, Berlin, Germany, 1993,

pp. 83–104.

[26] F. Bodart, A. Hennebert, J. Leheureux, J. Vanderdonckt,

Towards a dynamic strategy for computer-aided visual

placement, in: Proceedings of the Second ACM Workshop

on Advanced Visual Interfaces, AVI’94, ACM Press, NY,

USA, 1994, pp. 78–87.

[27] F. Bodart, J. Vanderdonckt, On the problem of selecting

interaction objects, in: Proceedings of the BCS Conference

HCI’94, Cambridge University Press, Glasgow, 1994,

pp. 163–178.

[28] A. Puerta, The MECANO project: comprehensive and

integrated support for model-based interface development,

in: Proceedings of the Second International Workshop on

Computer-Aided Design of User Interfaces, CADUI’96,

Presses Universitaires de Namur, Namur, Belgium, 1996,

pp. 19–25.

[29] N.J. Nunes, Object modeling for user-centered development

and user interface design: the WISDOM approach, Ph.D.

Thesis, University of Madeira, April 2001.

[30] P. Pinheiro da Silva, Object modelling of interactive systems:

the UMLi approach, Ph.D. Thesis, University of Manche-

ster, 2002.

[31] N.J. Nunes, J. Falcao e Cunha, WISDOM—a UML based

architecture for interactive systems, in: Proceedings of the

Seventh International Workshop on Design, Specification

and Verification of Interactive Systems, DSV-IS 2000,

Lecture Notes in Computer Science, vol. 1946, Springer,

Berlin, Germany, 2001, pp. 191–205.

[32] M. Elkoutbi, R.K. Keller, User interface prototyping based

on UML scenarios and high-level Petri nets, in: Proceedings

of 21st International Conference on Application and Theory

of Petri Nets, ICATPN 2000, Lecture Notes in Computer

Science, vol. 1825, Springer, Berlin, Germany, 2000,

pp. 166–186.

[33] M. Lozano, I. Ramos, P. González, User interface

specification and development, in: Proceedings of the IEEE

34th International Conference on Technology of Object-

Oriented Languages and Systems, IEEE Computer Society

Press, Washington, DC, USA, 2000, pp. 373–381.

[34] P.F. Campos, N.J. Nunes, A UML-based tool for designing

user interfaces, in: UML 2004—The Unified Modelling

Language, Modelling Languages and Applications Seventh

International Conference Satellite Activities, Lecture Notes

in Computer Science, vol. 3297, Springer, Berlin, Germany,

2005, pp. 273–276.
[35] N.J. Nunes, Representing user-interface patterns in UML,

in: Proceedings of the International Conference on Object

Oriented Information Systems, OOIS’ 2003, Lecture Notes

in Computer Science, vol. 2817, Springer, Berlin, Germany,

2003, pp. 142–151.

[36] D.J. Anderson, Extending UML for UI, Technical Report,

Proceedings of the Towards a UML Profile for Interactive

Systems Development, TUPIS’00, 2000. URL: hhttp://

www.uidesign.net/2000/papers/TUPISproposal.htmli.

[37] J. Conallen, Modeling Web application architectures with

UML, Communications of the ACM 42 (10) (1999) 63–70.

[38] P. Pinheiro da Silva, N.W. Paton, User interface modeling in

UMLi, IEEE Software 20 (4) (2003) 62–69.

[39] I. Horrocks, Constructing the User Interface with State-

charts, Addison-Wesley, Reading, MA, 1990.

[40] B. Lieberman, UML activity diagrams: detailing user inter-

face navigation, Technical Report hhttp://www.ibm.com/

developerworks/rational/library/content/RationalEdge/oct01/

UMLActivityDiagramsOct01.pdfi, 2001.

[41] K. Leung, L.C.K. Hui, S. Yiu, R. Tang, Modeling Web

navigation by statechart, in: Proceedings of the 24th Annual

International Computer Software and Applications Con-

ference, COMPSAC’2000, IEEE Computer Society Press,

Washington, DC, USA, 2000, pp. 41–47.

[42] M. Winckler, P. Palanque, StateWebCharts: a formal

description technique dedicated to navigation modelling of

Web applications, in: Proceedings of the 10th International

Workshop on Interactive Systems. Design, Specification and

Verification, DSV-IS 2003, Lecture Notes in Computer

Science, vol. 2844, Springer, Berlin, Germany, 2003,

pp. 61–76.

[43] J. Vanderdonckt, F. Bodart, Encapsulating knowledge for

intelligent automatic interaction objects selection, in: Pro-

ceedings of the Conference on Human Factors in Comput-

ing Systems, INTERCHI’93, ACM Press, NY, USA, 1993,

pp. 424–429.

[44] S. Kovacevic, UML and user interface modeling, in:

Proceedings of the Unified Modeling Language Conference,

UML’98, Lecture Notes in Computer Science, vol. 1618,

Springer, Berlin, Germany, 1998, pp. 253–266.

[45] S. Ceri, P. Fraternali, A. Bongio, Web Modeling Langu-

age (WebML): a modeling language for designing

Web sites, in: Proceedings of the Ninth International

World Wide Web Conference on Computer Networks,

North-Holland, Amsterdam, The Netherlands, 2000,

pp. 137–157.

[46] N. Koch, Software engineering for adaptive hypermedia

systems: reference model, modelling techniques and devel-

opment process, Ph.D. Thesis, Ludwig-Maximilians Uni-

versität Munchen, 2001.

[47] A. Puerta, Supporting user-centered design of adaptive user

interfaces via interface models, in: Proceedings of the First

Annual Workshop On Real-Time Intelligent User Interfaces

for Decision Support and Information Visualization, San

Francisco, 1998, p.11.

[48] M. Rettig, Prototyping for tiny fingers, Communications of

the ACM 37 (4) (1994) 21–27.

[49] SEGUIA, System Expert Generating User Interfaces Auto-

matically hhttp://www.isys.ucl.ac.be/bchi/research/seguia.

htmi.

[50] A. Puerta, J. Eisenstein, XIML: a common representa-

tion for interaction data, in: Proceedings of the Seventh

http://www.uidesign.net/2000/papers/TUPISproposal.html
http://www.uidesign.net/2000/papers/TUPISproposal.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/oct01/UMLActivityDiagramsOct01.pdf
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/oct01/UMLActivityDiagramsOct01.pdf
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/oct01/UMLActivityDiagramsOct01.pdf
http://www.isys.ucl.ac.be/bchi/research/seguia.htm
http://www.isys.ucl.ac.be/bchi/research/seguia.htm

ARTICLE IN PRESS
J.M. Almendros-Jiménez, L. Iribarne / Journal of Visual Languages and Computing 19 (2008) 695–720720
International Conference on Intelligent User Interfaces, IUI

’02, ACM Press, NY, USA, 2002, pp. 214–215.

[51] M. Abrams, C. Phanouriou, A.L. Batongbacal, S.M.

Williams, J.E. Shuster, UIML: an appliance-independent

XML user interface language, Computer Networks 31

(11–16) (1999) 1695–1708.

[52] A. Stanciulescu, Q. Limbourg, J. Vanderdonckt, B.

Michotte, F. Montero, A transformational approach for

multimodal Web user interfaces based on UsiXML, in:

Proceedings of the Seventh International Conference on

Multimodal Interfaces, ICMI ’05, ACM Press, NY, USA,

2005, pp. 259–266.

[53] S. Berti, F. Correani, G. Mori, F. Paternó, C. Santoro,

TERESA: a transformation-based environment for designing

and developing multi-device interfaces, in: Proceedings of

ACM CHI 2004 Conference on Human Factors in Computing

Systems, vol. II, ACM Press, NY, USA, 2004, pp. 793–794.

[54] P. Pinheiro da Silva, N.W. Paton, User interface modelling

with UML, in: Information Modelling and Knowledge

Bases XII, IOS Press, 2000, pp. 203–217.

[55] N.W. Paton, P. Pinheiro da Silva, ARGOi, an object-

oriented design tool based on UML, Technical Report

hhttp://trust.utep.edu/umli/software.htmli, 2007.

[56] J. Molina, P. González, M. Lozano, Developing 3D UIs using

the IDEAS tool: a case study, Human–Computer Interaction.

Theory and Practice, Lawrence Erlbaum Associates, 2003.

[57] O. Pastor, F. Hayes, S. Bear, OASIS: an object-oriented

specification language, in: Proceedings of Advanced Infor-

mation Systems Engineering, CAiSE’92, Lecture Notes in

Computer Science, vol. 593, Springer, Berlin, Germany,

1992, pp. 348–363.

[58] L.L. Constantine, L.A.D. Lockwood, Structure and style in

use cases for user interface design, in: M. van Harmelen

(Ed.), Object Modelling and User Interface Design, Addi-

son-Wesley, 2001. Reading, MA.

[59] UIDesign, UIRupture, Technical Report hhttp://www.uidesign.

net/2000/opinion/UIRupture.htmli, 2000.
[60] J. Heumann, User experience storyboards: building better

UIs with RUP, UML and use cases, Technical Report,

hhttp://www.ibm.com/developerworks/rational/library/content/

RationalEdge/nov03/f_usability_jh.pdfi, 2003.

[61] F. Paternò, Towards a UML for interactive systems, in:

Proceedings of the Eighth IFIP Working Conference on

Engineering for Human–Computer Interaction, EHCI 2001,

Lecture Notes in Computer Science, vol. 2254, Springer,

Berlin, Germany, 2001, pp. 7–18.

[62] J.C. Campos, M.D. Harrison, Formally verifying interactive

systems: a review, in: Proceedings of the International

Workshop on Design, Specification and Verification of

Interactive Systems, DSV-IS’97, Springer, Berlin, Germany,

1997, pp. 109–124.

[63] G. Doherty, J.C. Campos, M. Harrison, Representational

reasoning and verifications, in: Proceedings of the Formal

Aspects of the Human Computer Interaction, BCS-FACS

Workshop, SHU Press, 1998, pp. 193–212.

[64] J. Fekete, M. Richard, P. Dragicevic, Specifications and

verifications of interactor: a tour of esterel, in: Proceedings

of the Formal Aspects of the Human Computer Interaction,

BCS-FACS Workshop, SHU Press, 1998, pp. 103–119.

[65] P.A. Palanque, R. Bastide, in: Proceedings of the Interna-

tional Workshop on Design Specification and Verification of

Interactive Systems, DSV-IS’95, Springer, Berlin, Germany,

1995.

[66] P.A. Palanque, R. Bastide, V. Sengès, Validating interactive

system design through the verification of formal task and

system models, in: Proceedings of the IFIP Working

Conference on Engineering for Human–Computer Inter-

action, EHCI’95, Chapman & Hall, London, 1995,

pp. 189–212.

[67] F. Paternò, M. Mezzanotte, Formal analysis of user and

system interactions in the CERD case study, in: Proceedings

of the IFIP Working Conference on Engineering for

Human–Computer Interaction, EHCI’95, Chapman & Hall,

London, 1995, pp. 213–226.

http://trust.utep.edu/umli/software.html
http://www.uidesign.net/2000/opinion/UIRupture.html
http://www.uidesign.net/2000/opinion/UIRupture.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/nov03/f_usability_jh.pdf
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/nov03/f_usability_jh.pdf

	An extension of UML for the modeling of WIMP user interfaces
	Introduction
	Organization of the paper

	Related work
	MDD for UI modeling
	Use case diagram
	User-interaction diagrams
	UI diagrams
	Inclusion and generalization relationships
	UI-class diagram and UI prototypes
	Concrete modeling with the WIMP Java �swing package

	A UI modeling example
	Use case diagram
	User-interaction diagrams
	UI diagram
	Include relationships
	Generalization relationships

	UI-class diagrams and UI prototypes

	Formalization of the technique
	Conclusions and future work
	Advantages of the proposed technique
	Shortcomings of the proposed technique
	Extensions of the proposed technique

	Acknowledgments
	References

