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Abstract. This paper addresses the problem of integrating a fragment
of XQuery, a language for querying XML documents, into the functional-
logic language T OY. The queries are evaluated by an interpreter, and
the declarative nature of the proposal allows us to prove correctness
and completeness with respect to the semantics of the subset of XQuery
considered. The different fragments of XML that can be produced by
XQuery expressions are obtained using the non-deterministic features of
functional-logic languages. As an application of this proposal we show
how the typical generate and test techniques of logic languages can be
used for generating test-cases for XQuery expressions.

1 Introduction

XQuery has been defined as a query language for finding and extracting infor-
mation from XML [15] documents. Originally designed to meet the challenges
of large-scale electronic publishing, XML also plays an important role in the
exchange of a wide variety of data on the Web and elsewhere. For this rea-
son many modern languages include libraries or encodings of XQuery, including
logic programming [1] and functional programming [6]. In this paper we consider
the introduction of a simple subset of XQuery [18,20] into the functional-logic
language T OY [11].

One of the key aspects of declarative languages is the emphasis they pose on
the logic semantics underpinning declarative computations. This is important
for reasoning about computations, proving properties of the programs or apply-
ing declarative techniques such as abstract interpretation, partial evaluation or
algorithmic debugging [14]. There are two different declarative alternatives that
can be chosen for incorporating XML into a (declarative) language:

1. Use a domain-specific language and take advantage of the specific features
of the host language. This is the approach taken in [9], where a rule-based
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language for processing semi-structured data that is implemented and em-
bedded into the functional-logic language Curry, and also in [13] for the case
of logic programming.

2. Consider an existing query language such as XQuery, and embed a fragment
of the language in the host language, in this case T OY . This is the approach
considered in this paper.

Thus, our goal is to include XQuery using the purely declarative features of the
host languages. This allows us to prove that the semantics of the fragment of
XQuery has been correctly included in T OY . To the best of our knowledge,
it is the first time a fragment of XQuery has been encoded in a functional-
logic language. A first step in this direction was proposed in [5], where XPath
[16] expressions were introduced in T OY . XPath is a subset of XQuery that
allows navigating and returning fragments of documents in a similar way as the
path expressions used in the chdir command of many operating systems. The
contributions of this paper with respect to [5] are:
- The setting has been extended to deal with a simple fragment of XQuery, includ-
ing for statements for traversing XML sequences, if/where conditions, and the
possibility of returning XML elements as results. Some basic XQuery construc-
tions such as let statements are not considered, but we think that the proposal
is powerful enough for representing many interesting queries.
- The soundness of the approach is formally proved, checking that the semantics
of the fragment of XQuery is correctly represented in T OY .

Next section introduces the fragment of XQuery considered and a suitable op-
erational semantics for evaluating queries. The language T OY and its semantics
are presented in Section 3. Section 4 includes the interpreter that performs the
evaluation of simple XQuery expressions in T OY . The theoretical results estab-
lishing the soundness of the approach with respect to the operational semantics
of Section 2 are presented in Section 4.1. Section 5 explains the automatic gen-
eration of test cases for simple XQuery expressions. Finally, Section 6 concludes
summarizing the results and proposing future work.

An extended version of the paper including proofs of the theoretical results
can be found at [2].

2 XQuery and Its Operational Semantics

XQuery allows the user to query several documents, applying join conditions,
generating new XML fragments, and using many other features [18,20]. The syn-
tax and semantics of the language are quite complex [19], and thus only a small
subset of the language is usually considered. The next subsection introduces the
fragment of XQuery considered in this paper.

2.1 The Subset SXQ

In [4] a declarative subset of XQuery, called XQ, is presented. This subset is a core
language for XQuery expressions consisting of for, let and where/if statements.
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query ::= ( ) | query query | tag
| doc(File) | doc(File)/axis :: ν | var | var/axis :: ν
| for var in query return query
| if cond then query

cond ::= var=var | query
tag ::= 〈a〉 var . . . var 〈/a〉 | 〈a〉 tag 〈/a〉

Fig. 1. Syntax of SXQ, a simplified version of XQ

In this paper we consider a simplified version of XQ which we call SXQ and
whose syntax can be found in Figure 1. where axis can be one of child, self,
descendant or dos (i.e. descendant or self), and ν is a node test. The differences
of SXQ with respect to XQ are:

1. XQ includes the possibility of using variables as tag names using a construc-
tor lab($x).

2. XQ permits enclosing any query Q between tag labels 〈a〉Q〈/a〉. SXQ only
admits either variables or other tags inside a tag.

Our setting can be easily extended to support the lab($x) feature, but we omit
this case for the sake of simplicity in this presentation. The second restriction
is more severe: although lets are not part of XQ, they could be simulated using
for statements inside tags. In our case, forbidding other queries different from
variables inside tag structures imply that our core language cannot represent
let expressions. This limitation is due to the non-deterministic essence of our
embedding, since a let expression means collecting all the results of a query
instead of producing them separately using non-determinism. In spite of these
limitations, the language SXQ is still useful for solving many common queries
as the following example shows.

Example 1. Consider an XML file “bib.xml" containing data about books, and
another file “reviews.xml" containing reviews for some of these books (see [17],
sample data 1.1.2 and 1.1.4 to check the structure of these documents and an
example). Then we can list the reviews corresponding to books in “bib.xml" as
follows:

for $b in doc("bib.xml")/bib/book,
$r in doc("reviews.xml")/reviews/entry

where $b/title = $r/title
for $booktitle in $r/title,

$revtext in $r/review
return <rev> $booktitle $revtext </rev>

The variable $b takes the value of the different books, and $r the different
reviews. The where condition ensures that only reviews corresponding to the
book are considered. Finally, the last two variables are only employed to obtain
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the book title and the text of the review, the two values that are returned as
output of the query by the return statement.

It can be argued that the code of this example does not follow the syntax of
Figure 1. While this is true, it is very easy to define an algorithm that converts
a query formed by for, where and return statements into a SXQ query (as long
as it only includes variables inside tags, as stated above). The idea is simply to
convert the where into ifs, following each for by a return, and decomposing XPath
expressions including several steps into several for expressions by introducing a
new auxiliary variable and each one consisting of a single step.

Example 2. The query of Example 1 using SXQ syntax:

for $x1 in doc("bib.xml")/child::bib return
for $x2 in $x1/child::book return
for $x3 in doc("reviews.xml")/child::reviews return
for $x4 in $x3/entry return
if ($x2/title = $x4/title) then

for $x5 in $x4/title return
for $x6 in $x4/review return <rev> $x5 $x6 </rev>

We end this subsection with a few definitions that are useful for the rest of
the paper. The set of variables in a query Q is represented as Var(Q). Given a
query Q, we use the notation Q|p for representing the subquery Q′ that can be
found in Q at position p. Positions are defined as usual in syntax trees:

Definition 1. Given a query Q and a position p, Q|p is defined as follows:

Q|ε = Q
(Q1 Q2)|(i·p) = (Qi)|p i ∈ {1, 2}
(for var in Q1 return Q2)|(i·p) = (Qi)|p i ∈ {1, 2}
(if Q1 then Q2)|(i·p) = (Qi)|p i ∈ {1, 2}
(if var=var then Q1)|(1·p) = (Q1)|p

Hence the position of a subquery is the path in the syntax tree represented
as the concatenation of children positions p1 · p2 . . . · pn. For every position p,
ε · p = p · ε = p. In general Q|p is not a proper SXQ query, since it can contain
free variables, which are variables defined previously in for statements in Q.
The set of variables of Q that are relevant for Q|p is the subset of Var(Q) that
can appear free in any subquery at position p. This set, denoted as Rel(Q, p) is
defined recursively as follows:

Definition 2. Given a query Q, and a position p, Rel(Q, p) is defined as:

1. ∅, if p = ε .
2. Rel(Q1, p

′), if Q ≡ Q1 Q2, p = 1 · p′.
3. Rel(Q2, p

′), if Q ≡ Q1 Q2, p = 2 · p′.
4. Rel(Q1, p

′), if Q ≡ for var in Q1 return Q2, p = 1 · p′.
5. {var} ∪ Rel(Q2, p

′), if Q ≡ for var in Q1 return Q2, p = 2 · p′.
6. Rel(Q1, p

′), if Q ≡ if Q1 then Q2, p = 1 · p′.
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7. Rel(Q2, p
′), if Q ≡ if Q1 then Q2, p = 2 · p′.

Observe that cases Q ≡ (), Q ≡ tag, Q ≡ var, Q ≡ var/χ :: ν, and var = var
correspond to p ≡ ε.

Without loss of generality we assume that all the relevant variables for a given
position are indexed starting from 1 at the outer level. We also assume that
every for statement introduces a new variable. A query like for X in ((for Y
in ...) (for Y in ...)) ... is then renamed to an equivalent query of the
form for X1 in ((for X2 in ...) (for X3 in ...)) ... (notice that the
two Y variables occurred in different scopes).

2.2 XQ Operational Semantics

Figure 2 introduces the operational semantics of XQ that can be found in [4].
The only difference with respect to the semantics of this paper is that there is
no rule for the constructor lab, for the sake of simplicity.

As explained in [4], the previous semantics defines the denotation of an XQ
expression Q with k relevant variables, under a graph-like representation of a
data forest F , and a list of indexes e in F , denoted by [[Q]]k(F , e). In particular,
each relevant variable $xi of Q has as value the tree of F indexed at position
ei. χF (ei, υ) is a boolean function that returns true whenever υ is the subtree of
F indexed at position ei. The operator construct(a, (F , [w1...wn])), denotes the
construction of a new tree, where a is a label, F is a data forest, and [w1 . . . wn]
is a list of nodes in F . When applied, construct returns an indexed forest (F ∪
T ′, [root(T ′)]), where T ′ is a tree with domain a new set of nodes, whose root is
labeled with a, and with the subtree rooted at the i-th (in sibling order) child
of root(T ′) being an isomorphic copy of the subtree rooted by wi in F . The
symbol

⊎
used in the rules takes two indexed forests (F1, l1), (F2, l2) and returns

an indexed forest (F1 ∪ F2, l), where l = l1 · l2. Finally, tree(ei) denotes the
maximal tree within the input forest that contains the node ei, hence <

tree(ei)
doc

is the document order on the tree containing ei.

[[( )]]k(F , e) = (F , [ ])
[[Q1 Q2]]k(F , e) = [[Q1]]k(F , e) � [[Q2]]k(F , e)

[[for $xk+1in Q1 return Q2]]k(F , e) = let (F ′, l) = [[Q1]]k(F , e) in⊎
1≤i≤|l| [[Q2]]k+1(F

′, e · li)
[[$xi]]k(F , [e1, . . . , ek]) = (F , [ei])

[[$xi/χ :: ν]]k(F , [e1, . . . , ek]) = (F , list of nodes υ such that χF (ei, υ) and
label name of υ = ν in order <

tree(ei)
doc )

[[if C then Q1]]k(F , e) = if π2([[C ]]k(F , e)) �= [ ] then [[Q1]]k(F , e)
else (F , [ ])

[[$xi = $xj ]]k(F , [e1, . . . , ek]) = if ei = ej then construct(yes, (F , [ ]))
else (F , [ ])

Fig. 2. Semantics of Core XQuery
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Without loss of generality this semantics assumes that all the variables rele-
vant for a subquery are numbered consecutively starting by 1 as in Example 2.
It also assumes that the documents appear explicitly in the query. That is, in
Example 2 we must suppose that instead of doc(“bib.xml") we have the XML
corresponding to this document. Of course this is not feasible in practice, but
simplifies the theoretical setting and it is assumed in the rest of the paper.

These semantic rules constitute a term rewriting system (TRS in short, see
[3]), with each rule defining a single reduction step. The symbol :=∗ represents
the reflexive and transitive closure of := as usual. The TRS is terminating
and confluent (the rules are not overlapping). Normal forms have the shape
(F , e1, . . . , en) where F is a forest of XML fragments, and ei are nodes in F ,
meaning that the query returns the XML fragments (indexed by) e1, . . . , en.
The semantics evaluates a query starting with the expression [[Q]]0(∅, ()). Along
intermediate steps, expressions of the form [[Q′]]k(F , ek) are obtained. The idea
is that Q′ is a subquery of Q with k relevant variables (which can occur free in
Q′), that must take the values ek. The next result formalizes these ideas.

Proposition 1. Let Q be a SXQ query. Suppose that

[[Q]]0(∅, ()) :=∗ [[Q′]]n(F , en)

Then:

– Q′ is a subquery of Q, that is, Q′ = Qp for some p.
– Rel(Q, p) = {X1, . . . , Xn}.
– Let S be the set of free variables in Q′. Then S ⊂ Rel(Q, p).
– [[Q′]]n(F , en) = [[Q′θ]]0(∅, ()), with θ = {X1 	→ e1, . . . , Xn 	→ en}

Proof. Straightforward from Definition 2, and from the XQ semantic rules of
Figure 2.

A more detailed discussion about this semantics and its properties can be
found in [4].

3 T OY and Its Semantics

A T OY [11] program is composed of data type declarations, type alias, infix op-
erators, function type declarations and defining rules for functions symbols. The
syntax of partial expressions in T OY e ∈ Exp⊥ is e ::= ⊥ | X | h | (e e′) where
X is a variable and h either a function symbol or a data constructor. Expressions
of the form (e e′) stand for the application of expression e (acting as a function)
to expression e′ (acting as an argument). Similarly, the syntax of partial patterns
t ∈ Pat⊥ ⊂ Exp⊥ can be defined as t ::=⊥ | X | c t1 . . . tm | f t1 . . . tm
where X represents a variable, c a data constructor of arity greater or equal to
m, and f a function symbol of arity greater than m, being ti partial patterns
for all 1 ≤ i ≤ m. Each rule for a function f in T OY has the form:

f t1 . . . tn︸ ︷︷ ︸
left-hand side

→ r︸︷︷︸
right-hand side

⇐ C1, . . . , Ck︸ ︷︷ ︸
condition

where s1 = u1, . . . , sm = um︸ ︷︷ ︸
local definitions
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where ui and r are expressions (that can contain new extra variables), Cj are
strict equalities, and ti, si are patterns. In T OY, variable names must start with
either an uppercase letter or an underscore (for anonymous variables), whereas
other identifiers start with lowercase.

Data type declarations and type alias are useful for representing XML docu-
ments in T OY:

data node = txt string
| comment string
| tag string [attribute] [node]

data attribute = att string string
type xml = node

The data type node represents nodes in a simple XML document. It distin-
guishes three types of nodes: texts, tags (element nodes), and comments, each
one represented by a suitable data constructor and with arguments representing
the information about the node. For instance, constructor tag includes the tag
name (an argument of type string) followed by a list of attributes, and finally a
list of child nodes. The data type attribute contains the name of the attribute
and its value (both of type string). The last type alias, xml, renames the data
type node. Of course, this list is not exhaustive, since it misses several types of
XML nodes, but it is enough for this presentation.

T OY includes two primitives for loading and saving XML documents, called
load_xml_file and write_xml_file respectively. For convenience all the doc-
uments are started with a dummy node root. This is useful for grouping several
XML fragments. If the file contains only one node N at the outer level, the root
node is unnecessary, and can be removed using this simple function:

load_doc F = N <== load_xml_file F == xmlTag "root" [] [N]

where F is the name of the file containing the document. Observe that the strict
equality == in the condition forces the evaluation of load_xml_file F and suc-
ceeds if the result has the form xmlTag "root" [] [N] for some N. If this is the
case, N is returned.

The constructor-based ReWriting Logic (CRWL) [7] has been proposed as a
suitable declarative semantics for functional-logic programming with lazy non-
deterministic functions. The calculus is defined by five inference rules (see Fig-
ure 3): (BT) that indicates that any expression can be approximated by bottom,
(RR) that establishes the reflexivity over variables, the decomposition rule (DC),
the (JN) (join) rule that indicates how to prove strict equalities, and the function
application rule (FA). In every inference rule, r, ei, aj ∈ Exp⊥ are partial expres-
sions and t, tk ∈ Pat⊥ are partial patterns. The notation [P ]⊥ of the inference
rule FA represents the set {(l → r ⇐ C)θ | (l → r ⇐ C) ∈ P, θ ∈ Subst⊥}
of partial instances of the rules in program P (Subst⊥ represents the set of partial
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BT e →⊥

RR X → X with X ∈ V ar

DC e1 → t1 . . . em → tm h tm ∈ Pat⊥
h em → h tm

JN e → t e′ → t t ∈ Pat (total pattern)
e == e′

FA e1 → t1 . . . en → tn C r ak → t
f en ak → t

if (f tn → r ⇐ C) ∈ [P ]⊥, t �=⊥

Fig. 3. CRWL Semantic Calculus

substitutions that replace variables by partial terms). The most complex infer-
ence rule is FA (Function Application), which formalizes the steps for computing
a partial pattern t as approximation of a function call f en:

1. Obtain partial patterns ti as suitable approximations of the arguments ei.
2. Apply a program rule (f tn → r ⇐ C) ∈ [P ]⊥, verify the condition C, and

check that t approximates the right-hand side r.

In this semantic notation, local declarations a = b introduced in T OY syntax by
the reserved word where are part of the condition C as approximation statements
of the form b → a.
The semantics in T OY allows introducing non-deterministic functions, such as
the following function member that returns all the elements in a list:

member:: [A] -> A
member [X | Xs] = X
member [X | Xs] = member Xs

Another example of T OY function is the definition of the infix operator .::.
for XPath expressions (the operator :: in XPath syntax):

(.::.) :: (A -> B) -> (B -> C) -> (A -> C)
(F .::. G) X = G (F X)

As the examples show, T OY is a typed language. However the type decla-
ration is optional and in the rest of the paper they are omitted for the sake
of simplicity. Goals in T OY are sequences of strict equalities. A strict equality
e1 == e2 holds (inference JN) if both e1 and e2 can be reduced to the same total
pattern t. For instance, the goal member [1,2,3,4] == R yields four answers,
the four values for R that make the equality true: {R 	→ 1}, . . ., {R 	→ 4}.
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4 Transforming SXQ into T OY

In order to represent SXQ queries in T OY we use some auxiliary datatypes:

type xPath = xml-> xml

data sxq = xfor xml sxq sxq | xif cond sxq | xmlExp xml |
xp path | comp sxq sxq

data cond = xml := xml | cond sxq
data path = var xml | xml :/ xPath | doc string xPath

The structure of the datatype sxq allows representing any SXQ query (see
SXQ syntax in Figure 1). It is worth noticing that a variable introduced by a
for statement has type xml, indicating that the variable always contains a value
of this type. T OY includes a primitive parse_xquery that translates any SXQ
expression into its corresponding representation as a term of this datatype, as
the next example shows:

Example 3. The translation of the SXQ query of Example 2 into the datatype
sxq produces the following T OY data term:

Toy> parse_xquery "for $x1 in doc(\"bib.xml\")/child::bib return
for $x2 in ..... <rev> $x5 $x6 </rev>" == R

yes
{R --> xfor X1 (xp (doc "bib.xml" (child .::. (nameT "bib"))))

(xfor X2 (xp ( X1 :/ (child .::.(nameT "book"))))
(xfor X3 (xp (doc "reviews.xml" (child .::. (nameT "reviews"))))
(xfor X4 (xp ( X3 :/ (child .::.(nameT "entry"))))
(xif ((xp(X2 :/ (child .::.(nameT "title")))) :=

(xp(X4 :/ (child .::.(nameT "title")))))
(xfor X5 (xp ( X4 :/ (child .::.(nameT "title"))))
(xfor X6 (xp ( X4 :/ (child .::.(nameT "review"))))

(xmlExp (xmlTag "rev" [] [X5,X6]))))))))
}

The interpreter assumes the existence of the infix operator .::. that connects
axes and tests to build steps, defined as the sequence of applications in Section 3.

The rules of the T OY interpreter that processes SXQ queries can be found
in Figure 4. The main function is sxq, which distinguishes cases depending of
the form of the query. If it is an XPath expression then the auxiliary function
sxqPath is used. If the query is an XML expression, the expression is just re-
turned (this is safe thanks to our constraint of allowing only variables inside
XML expressions). If we have two queries (comp construct), the result of evalu-
ating any of them is returned using non-determinism. The for statement (xfor
construct) forces the evaluation of the query Q1 and binds the variable X to the
result. Then the result query Q2 is evaluated. The case of the if statement is
analogous. The XPath subset considered includes tests for attributes (attr),
label names (nameT), general elements (nodeT) and text nodes (textT). It also
includes the axes self, child, descendant and dos. Observe that we do not
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sxq (xp E) = sxqPath E
sxq (xmlExp X) = X
sxq (comp Q1 Q2) = sxq Q1
sxq (comp Q1 Q2) = sxq Q2
sxq (xfor X Q1 Q2) = sxq Q2 <== X== sxq Q1
sxq (xif (Q1:=Q2) Q3) = sxq Q3 <== sxq Q1 == sxq Q2
sxq (xif (cond Q1) Q2) = sxq Q2 <== sxq Q1 == _

sxqPath (var X) = X
sxqPath (X :/ S) = S X
sxqPath (doc F S) = S (load_xml_file F)

%%%% XPATH %%%%%%
attr A (xmlTag S Attr L ) = xmlText T <== member Attr == xmlAtt A T
nameT S (xmlTag S Attr L ) = xmlTag S Attr L
nodeT X = X
textT (xmlText S) = xmlText S
commentT S (xmlComment S) = xmlComment S

self X = X
child (xmlTag _Name _Attr L) = member L
descendant X = child X
descendant X = descendant Y <== child X == Y
dos = self
dos = descendant

Fig. 4. T OY transformation rules for SXQ

include reverse axes like ancestor because they can be replaced by expressions
including forward axes, as shown in [12]. Other constructions such as filters can
be easily included (see [5]). The next example uses the interpreter to obtain the
answers for the query of our running example.

Example 4. The goal sxq (parse_xquery "for....")) == R applies the in-
terpreter of Figure 4 to the code of Example 2 (assuming that the string after
parse_xquery is the query in Example 2), and returns the T OY representation
of the expected results:

<rev>
<title>TCP/IP Illustrated</title>
<review> One of the best books on TCP/IP. </review>
</rev>
...

4.1 Soundness of the Transformation

One of the goals of this paper is to ensure that the embedding is semantically
correct and complete. This section introduces the theoretical results establishing
these properties. If V is a set of indexed variables of the form {X1, . . . , Xn} we
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use the notation θ(V ) to indicate the sequence θ(X1), . . . , θ(Xn). In these results
it is implicitly assumed that there is a bijective mapping f from XML format
to the datatype xml in T OY . Also, variables in XQuery $xi are assumed to be
represented in T OY as Xi and conversely. However, in order to simplify the
presentation, we omit the explicit mention to f and to f−1.

Lemma 1. Let P be a T OY program, Q′ an SXQ query, and Q, p such that
Q ≡ Q′

|p. Define V = Rel(Q′, p) (see Definition 2), and k = |V |. Let θ be a
substitution such that P � (sxq Qθ == t) for some pattern t.
Then [[Q]]k(F , [θ(V )]) :=∗ (F ′, L), for some forests F ,F ′ and with L verifying
t ∈ L.

The theorem that establishes the correctness of the approach is an easy con-
sequence of the Lemma.

Theorem 1. Let P be the T OY program of Figure 4, Q an SXQ query, t a
T OY pattern, and θ a substitution such that P � (sxq Qθ == t) for some θ.
Then [[Q]]0(∅, []) :=∗ (F , L), for some forest F , and L verifying t ∈ L.

Proof. In Lemma 1 consider the position p ≡ ε. Then Q′ ≡ Q, V = ∅ and k = 0.
Without loss of generality we can restrict in the conclusion to F = ∅, because
θ(V ) = ∅ and therefore F is not used during the rewriting process. Then the
conclusion of the theorem is the conclusion of the lemma.

Thus, our approach is correct. The next Lemma allows us to prove that it is
also complete, in the sense that the T OY program can produce every answer
obtained by the XQ operational semantics.

Lemma 2. Let P be the T OY program of Figure 4. Let Q′ be a SXQ query and
Q, p such that Q ≡ Q′

|p. Define V = Rel(Q′, p) (see Definition 2) and k = |V |.
Suppose that [[Q]]k(F , ek) :=∗ (F ′, an) for some F , F ′, ek, an.
Then, for every aj, 1 ≤ j ≤ n, there is a substitution θ such that θ(Xi) = ei for
Xi ∈ V and a CRWL-proof proving P � sxq Qθ == aj.

As in the case of correctness, the completeness theorem is just a particular
case of the Lemma:

Theorem 2. Let P be the T OY program of Figure 4. Let Q be a SXQ query
and suppose that [[Q]]k(∅, []) :=∗ (F , an) for some F , an. Then for every aj,
1 ≤ j ≤ n, there is P � (sxq Q)θ == aj for some substitution θ.

Proof. As in Theorem 1, suppose p ≡ ε and thus Q′ ≡ Q. Then V = ∅ and k = 0.
Then, if [[Q]]0(∅, ∅) :=∗ (F , an) it is easy to check that [[Q]]0(F ′, ∅) :=∗ (F , an)
for any F ′. Then the conclusion of the lemma is the same as the conclusion of
the Theorem.

The proofs of Lemmata 1 and 2 can be found in [2].
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5 Application: Test Case Generation

In this section we show how an embedding of SXQ into T OY can be used for
obtaining test-cases for the queries. For instance, consider the erroneous query
of the next example.

Example 5. Suppose that the user also wants to include the publisher of the book
among the data obtained in Example 1. The following query tries to obtain this
information:

Q = for $b in doc("bib.xml")/bib/book,
$r in doc("reviews.xml")/reviews/entry,
where $b/title = $r/title
for $booktitle in $r/title,

$revtext in $r/review,
$publisher in $r/publisher

return <rev> $booktitle $publisher $revtext </rev>

However, there is an error in this query, because in $r/publisher the variable
$r should be $b, since the publisher is in the document “bib.xml", not in “re-
views.xml". The user does not notice that there is an error, tries the query (in
T OY or in any XQuery interpreter) and receives an empty answer.

In order to check whether a query is erroneous, or even to help finding the
error, it is sometimes useful to have test-cases, i.e., XML files which can produce
some answer for the query. Then the test-cases and the original XML documents
can be compared, and this can help finding the error. In our setting, such test-
cases are obtained for free, thanks to the generate and test capabilities of logic
programming. The general process can be described as follows:

1. Let Q’ be the translation parse_xquery Q of query Q into T OY.
2. Let F1, . . . , Fk be the names of the XML documents occurring in Q’. That

is, for each Fi, 1 ≤ i ≤ k, there is an occurrence of an expression of the form
load_xml_file(Fi) in Q’ (which corresponds to expressions doc(Fi) in Q).
Let Q” be the result of replacing each doc(Fi) expression by a new variable
Di, for i = 1 . . . k.

3. Let “expected.xml” be a document containing an expected answer for the
query Q.

4. Let E the expression Q”==load_doc “expected.xml”.
5. Try the goal

G ≡ E, write_xml_file D1 F ′
1, ..., write_xml_file Dk F ′

k

The idea is that the goal G looks for values of the logic variables Di fulfilling
the strict equality. The result is that after solving this goal, the Di variables
contain XML documents that can produce the expected answer for this query.
Then each document is saved into a new file with name F ′

i . For instance F ′
i can

consist of the original name Fi preceded by some suitable prefix tc. The process
can be automatized, and the result is the code of Figure 5.
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prepareTC (xp E) = (xp E’,L)
where (E’,L) = prepareTCPath E

prepareTC (xmlExp X) = (xmlExp X, [])
prepareTC (comp Q1 Q2) = (comp Q1’ Q2’, L1++L2)

where (Q1’,L1) = prepareTC Q1
(Q2’,L2) = prepareTC Q2

prepareTC (xfor X Q1 Q2) = (xfor X Q1’ Q2’, L1++L2)
where (Q1’,L1) = prepareTC Q1

(Q2’,L2) = prepareTC Q2
prepareTC (xif (Q1:=Q2) Q3) = (xif (Q1’:=Q2’) Q3’,L1++(L2++L3))

where (Q1’,L1) = prepareTC Q1
(Q2’,L2) = prepareTC Q2
(Q3’,L3) = prepareTC Q3

prepareTC (xif (cond Q1) Q2) = (xif (cond Q1) Q2, L1++L2)
where (Q1’,L1) = prepareTC Q1

(Q2’,L2) = prepareTC Q2

prepareTCPath (var X) = (var X, [])
prepareTCPath (X :/ S) = (X :/ S, [])
prepareTCPath (doc F S) = (A :/ S, [write_xml_file A ("tc"++F)])

generateTC Q F = true <== sxq Qtc == load_doc F, L==_
where (Qtc,L) = prepareTC Q

Fig. 5. T OY transformation rules for SXQ

The code uses the list concatenation operator ++ which is defined in T OY as
usual in functional languages such as Haskell. It is worth observing that if there
are no test-case documents that can produce the expected result for the query,
the call to generateTC will loop. The next example shows the generation of
test-cases for the wrong query of Example 5.

Example 6. Consider the query of Example 5 , and suppose the user writes the
following document “expected.xml”:

<rev>
<title>Some title</title>
<review>The review</review>
<publisher>Publisher</publisher>
</rev>

This is a possible expected answer for the query. Now we can try the goal:

Toy> Q == parse_xquery "for....", R == generateTC Q "expected.xml"

The first strict equality parses the query, and the second one generates the
XML documents which constitute the test cases. In this example the test-cases
obtained are:
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% bibtc.xml
<bib>
<book>
<title>Some title</title>
</book>
</bib>

% revtc.xml
<reviews>
<entry>
<title>Some title</title>
<review>The review </review>
<publisher>Publisher</publisher>
</entry>

</reviews>

By comparing the test-case “revtc.xml” with the file “reviews.xml” we
observe that the publisher is not in the reviews. Then it is easy to check that
in the query the publisher is obtained from the reviews instead of from the bib
document, and that this constitutes the error.

6 Conclusions

The paper shows the embedding of a fragment of the XQuery language for query-
ing XML documents into the functional-logic language T OY. Although only a
small subset of XQuery consisting of for, where/if and return statements has
been considered, the users of T OY can now perform simple queries such as join
operations. The formal definition of the embedding allows us to prove the sound-
ness of the approach with respect to the operational semantics of XQuery. The
proposal respects the declarative nature of T OY , exploiting its non-deterministic
nature for obtaining the different results produced by XQuery expressions. An
advantage of this approach with respect to the use of lists usually employed in
functional languages is that our embedding allows the user to generate test-cases
automatically when possible, which is useful for testing the query, or even for
helping to find the error in the query. An extended version of this paper, includ-
ing the proofs of the theoretical results and more detailed explanations about
how to install T OY and run the prototype can be found in [2].

The most obvious future work would be introducing the let statement, which
presents two novelties. The first is that they are lazy, that is, they are not
evaluated if they are not required by the result. This part is easy to fulfill since we
are in a lazy language. In particular, they could be introduced as local definitions
(where statements in T OY). The second novelty is more difficult to capture, and
it is that the variables introduced by let represent an XML sequence. The natural
representation in T OY would be a list, but the non-deterministic nature of our
proposal does not allow us to collect all the results provided by an expression in
a declarative way. A possible idea would be to use the functional-logic language
Curry [8] and its encapsulated-search [10], or even the non-declarative collect
primitive included in T OY . In any case, this will imply a different theoretical
framework and new proofs for the results. A different line for future work is
the use of test cases for finding the error in the query using some variation of
declarative debugging [14] that could be applied to this setting.
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