
Database Query Languages and Functional Logic Programming 1

Database Query Languages and Functional
Logic Programming

Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Dpto. de Lenguajes y Computación. Universidad de Almeŕıa.
Carretera de Sacramento s/n. 04120-Almeŕıa. Spain

jalmen@ual.es,abecerra@ual.es

Abstract Functional logic programming is a paradigm which inte-
grates functional and logic programming. It is based on the use of rewrit-
ing rules for defining programs, and rewriting for goal solving. In this
context, goals, usually, consist of equality (and, sometimes, inequality)
constraints, which are solved in order to obtain answers, represented by
means of substitutions. On the other hand, database programming lan-
guages involve a data model, a data definition language and, finally, a
query language against the data defined according to the data model. To
use functional logic programming as a database programming language,
(1) we will propose a data model involving the main features adopted
from functional logic programming (for instance, handling of partial and
infinite data), (2) we will use conditional rewriting rules as data defini-
tion language, and finally, (3) we will deal with equality and inequality
constraints as query language. Moreover, as most database systems, (4)
we will propose an extended relational calculus and algebra, which can
be used as alternative query languages in this framework. Finally, (5) we
will prove that three alternative query languages are equivalent.

Keywords Logic Programming, Functional-Logic Programming, De-
ductive Databases.

§1 Introduction
Functional logic programming is a paradigm which integrates functional

and logic programming, widely investigated during the last years. In fact, many

2 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

languages, such as CURRY 14), BABEL 25), and TOY 21), among others, have
been developed around this research area 13).

Functional logic programming is based on the use of rewriting rules for
programs and rewriting for goal solving. Goals, usually, consist of equations (and
sometimes inequations) which are solved in order to obtain answers represented
by means of substitutions.

On the other hand, it is known that database technology is involved
in most software applications. For this reason, programming languages should
include database features in order to cover with ’real world’ applications. There-
fore, the integration of database technology into functional logic programming
may be interesting, in order to increase its application field.

In this sense, we should consider that database programming languages
consist of a data model, a data definition language, and a query language against
the data defined according to the data model.

Relational calculus and algebra are traditional formalisms for querying
relational databases 11). In fact, they are the basis of a high-level database query
languages like SQL, and the simplicity of these formalisms is one of the keys for
the wide adoption from database technology.

On the one hand, relational calculus is based on the use of a fragment
of the first-order logic. In the relational calculus, logic formulas contain logic
predicates, representing relations, and they use equality relations, which allow us
to compare attribute values. In the logic formulas, free variables play the same
role as search variables. The simplest relational calculus handles conjunctions,
does not support negation, and formulas are existentially quantified. Moreover,
it allows the handling of tuples belonging to the cross product and join of two
or more input relations. However, disjunctions, universal quantifications and
negation can be included in order to handle other relations, such as the union
of two relations, the complement of a relation (i.e. tuples which do not belong
to a relation), and the difference of two relations (i.e. tuples which belong to a
relation but not to another one).

On the other hand, relational algebra is based on the use of algebra
operators, such as selection, projection, cross product, join, set union and set
difference. The selection operator selects those tuples which satisfy a given
condition. The projection operator projects some attribute values from a given
set of tuples. The cross product operator combines two or more sets of tuples.
The join operator is a combination of selection operator together with the cross

Database Query Languages and Functional Logic Programming 3

product. Finally, relational algebra incorporates two operators from set theory,
such as set union and set difference, which represent the union and the difference
of two sets of tuples, respectively.

1.1 Contributions of the Paper
In order to integrate functional logic programming and databases, we

propose: (1) to adapt functional logic programs to databases, by considering
a suitable data model and a data definition language; (2) to propose different
query formalisms which handle the proposed data model ; concretely, a functional
logic query language, an extended relational calculus and an extended relational
algebra; and finally, (3) to provide semantic foundations to the different query
languages.

With respect to (1), the underlying data model of functional logic pro-
gramming is complex from a database point of view 1, 9, 15, 36) in a double sense.
Firstly, types can be defined by using recursively defined datatypes, such as lists
and trees. This means the attributes can be multi-valued (i.e. more than one
value for a given attribute corresponds to each set of key attributes), storing
complex values built from these datatypes. Secondly, we have adopted a non-
deterministic semantics from functional logic programming, investigated in the
framework CRWL 12). Under this non-deterministic semantics, values can be
grouped into sets, representing the output of a non-deterministic function. For
instance,

(1) edge a := b.

(2) edge a := c.

(3) edge b := c.

define a non-deterministic function, named edge, in order to represent a graph
with three nodes (i.e. a, b and c), and three edges, that is one edge from a

to b (rule (1)), one from a to c (rule (2)) and, finally, one from b to c (rule
(3)). Here, the values defined by function edge for node a (rules (1) and (2))
are represented by the set {b, c}, and this set can be handled by means of a
recursive function, called path, which includes the conditions for computing the
paths occurring in a graph. The function path is defined as follows:

(4) path X := edge X.

(5) path X := path (edge X).

Therefore, in our case, the fact of adopting the framework CRWL assumes that
the attributes can be also multi-valued, in the sense of storing complex values
grouped into sets.

4 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Moreover, functional logic programming can handle partial and possibly
infinite data. The undefined value ⊥ is introduced in CRWL in order to give
semantics to expressions such as edge c, whose set of defined values is {⊥}. Even
more, ⊥ is used for representing a partial approximation to possibly infinite data;
for instance, we could define the function listpath as follows:

(6) listpath X := [X | listpath (edge X)].

wherein [a, b, c,⊥] and [a, c,⊥] represent two partial approximations to the two
paths defined from node a enclosed in a list. With respect to our setting, an
attribute can be partially defined or, even, include possibly infinite information.
The first case can be interpreted as follows: the database can include undefined

information and partially undefined information 19) (i.e. absence or unknown in-
formation, and information that is partially known, respectively); the second
one indicates that the database can store infinite information, allowing infinite
database instances 8) (i.e. infinite attribute values and infinite sets of tuples).
In our case, the infinite information will be also handled by means of partial
approximations.

Furthermore, we have adopted the handling of negation from functional
logic programming, studied in the framework CRWLF 22). This framework incor-
porates the notion of “failure of reduction”, in such a way that, in the framework
CRWLF expressions like edge c define the set of values {F} instead of {⊥}. {F}
represents, for instance, that the expression edge c fails when it is reduced, since
none of the rules (i.e. (1), (2) and (3)) can be applied. In this case, it is when
we can state that there exists no edges from node c. The failure value, F, can be
also used in order to build terms with failure, that is terms including F. For in-
stance, the expression listpath c denotes [c, F, F, . . .], given that the expression
edge F denotes F too. However, in absence of information, the undefined value
⊥ incorporated by CRWL keeps on being useful, since it can be used with the
same role as in functional programming; that is, to define partial approximations
to the value of a function, and to provide semantics to functions with a cyclic
definition, or even functions with an undefined condition such as:

(7) cycle X := cycle X.

(8) cycle2 X := 0 ⇐ cycle X ./ 0.

where, in order to apply rule (8), the equality constraint cycle X ./ 0 has
to be solved. In both rules, cycle X and cycle2 X define as semantics the
unitary set {⊥}. Finally, let us remark that both values ⊥ and F are used from a

Database Query Languages and Functional Logic Programming 5

semantic point of view, and they can be never used to explicitly provide values
to functions. For more details about the frameworks CRWL (resp. CRWLF),
we recommend to the interested readers the papers 12) (resp. 22, 23)).

As a consequence, the proposed data model can also deal with nonexis-

tent information and partially nonexistent information (i.e. information that does
not exist, and information that exists partially, respectively).

Finally, we propose a data definition language which, basically, consists
of database schema definitions, database instance definitions and (lazy) function
definitions.

A database schema definition includes relation names and a sequence
of attributes for each defined relation name. For a given database schema, the
database instance definitions define key and non-key attribute values, by means
of (constructor-based) conditional rewriting rules 12, 22). The rewriting rules in-
clude conditions which allow us to handle equality and inequality constraints.
Moreover, we can define a set of lazy functions to be used by the queries, which
allows us to deal with recursively defined datatypes. In a database setting, these
functions are also named interpreted functions. As a consequence, “pure” func-
tional logic programs (i.e. programs without negation) can be considered as a
particular case of our programs.

With respect to (2) (i.e. to propose query formalisms based on extensions
of the relational calculus and algebra which handle the proposed data model),
typically, the query language involved in a functional logic language will be
based on the solving of conjunctions of equality and inequality constraints. These
constraints are defined w.r.t. some equality and inequality relations defined over
terms 12, 22).

In the context of query languages, the proposed extended relational cal-
culus will handle conjunctions of atomic formulas, which represent relation pred-
icates, equality and inequality relations over terms, and approximation equations
used for dealing with interpreted functions. Finally, the logic formulas will be
either existentially or universally quantified, depending on whether they include
negation or not.

Analogously, and w.r.t. the proposed extended relational algebra, it will
deal with equality and inequality constraints, complex values, and interpreted
functions. With this aim, we will generalize the selection and projection opera-
tors in a double sense, allowing: (a) to select tuples satisfying a set of equality
and inequality constraints; and (b) to restructure complex values by applying

6 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

data constructors and destructors, and interpreted functions and their inverses
over the attribute values of a given schema instance.

Finally, and w.r.t. (3) (i.e. to provide semantic foundations to the
different query languages), we will prove that our relational calculus and algebra
are equivalent query formalisms, as well as, equivalent to the query language
involved in most existent functional logic languages. Let us remark that this
query language will be based on equality and inequality constraints.

Finally, let us remark that this work goes toward the design of a func-
tional logic deductive language, called INDALOG. The INDALOG project
involves the design of an operational semantics, already studied in 3, 6), a data
model, which has been firstly presented in 5), and two alternative query for-
malisms: an extended relational calculus 5) and an extended relational algebra 4).
The relation of this paper with the just mentioned ones is as follows: here, we
will compare both alternative query formalisms (i.e. the extended relational cal-
culus and algebra), showing its equivalence, and we will prove the equivalence of
both query formalisms w.r.t. the built-in functional logic query language; how-
ever, in this paper and w.r.t. 4), we will consider the extension for the handling
of negation.

1.2 Benefits of the Approach
The benefits of our approach come from the integration of functional

logic programming and databases.
From the point of view of functional-logic programming, programmers

in this paradigm can use a functional-logic language for programming databases.
Therefore, this integration opens an application field to this kind of languages. In
addition, it is known that declarative languages (i.e. logic, functional, functional-
logic) are very useful for some specialized tasks and the connectivity of these lan-
guages with databases opens new lines of cooperation. In fact, this connectivity
can be considered as the main benefit of our approach.

Nevertheless, functional-logic databases are adapted to the philosophy
of functional-logic programming. Declarative programmers can define a simple
database schema, and define a database instance by means of a set of conditional
rewriting rules. Database instances can handle partial and infinite data, natural
in functional-logic programming. In addition, they could use the query language
based on equality and inequality constraints, to which they can be more habit-
uated, or alternatively, they can use more database oriented languages, such as

Database Query Languages and Functional Logic Programming 7

the extended relational calculus and algebra. For instance, from the relational
calculus, the translation to a SQL style syntax is not too complicated, allowing
the programmer to use this syntax. In addition, let us remark that the devel-
opment of an extended relational algebra keeps on being very interesting, since
this query formalism is suitable for the design of an operational semantics based
on the application of the algebra operators. This aspect is out of the scope of
this paper, but we will consider it as future work.

From the point of view of database programmers, we know and as-
sume that functional-logic programming is not the most natural and typical
framework. Therefore, we think that our main contribution to this context is
the study of complex data models and query languages, which basically handle
more sophisticated data (for instance, partial and infinite data, multi-valued at-
tributes and handling of constraints over multi-valued attributes). The need of
handling partial data and multi-valued attributes in databases is widely known
19, 30). Now, the main question is why to use infinite data. Traditional relational
databases work with simple data models, and as a consequence the application
field of traditional relational databases is limited. Once recognized the impor-
tance for the database context of storing less standard data, like spatial and
temporal data, it is obvious that we need to handle new data models. A spatial
object can be infinite or, at least, its infiniteness should be handled in an efficient
way. Similarly with temporal data. Infinite data can be handled as follows: (1)
by means of a symbolic representation, like an equation; or (2) by means of (pos-
sibly infinite) data structures, which are computed, as much as needed, by using
a lazy evaluation. (2) is the representation used by the declarative languages,
such as functional and functional-logic languages. In any case, we are convinced
that our contribution in this field is more theoretical than practical.

With respect to aspects of efficiency, the functional and logic languages
are rich in expressivity once infinite and partial data, and non-determinism are
introduced. Obviously, these features can cause a loss of efficiency when, for
instance, a query involves infinite data. However, it is important to remark that
the infinite data are lazily handled, and thus not all the aspects of efficiency
are negative. This means an infinite data is evaluated as far as needed up to
obtain the answer. In our approach, we have also taken into account this im-
provement of efficiency, since our language is lazy. Nevertheless, we have studied
some aspects relative to efficiency, which have been considered in the deductive
logic languages; concretely, the top-down evaluation, usual in (functional) logic

8 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

languages, is not a suitable evaluation method from the point of view of disk
accesses. For this reason, we have developed an operational semantics 3, 6) based
on magic sets and a goal-directed bottom-up evaluation for functional-logic pro-
grams. Moreover, this evaluation mechanism remains the lazy component of
functional logic languages. In fact, the adoption of the operational semantics
based on a goal-directed bottom-up evaluation allows us to keep, at least, the
same efficiency as other functional-logic languages.

Finally, we will prove that the three alternative query languages (i.e.
functional-logic query language, extended relational calculus and extended rela-
tional algebra) are equivalent; that is, they have the same expressivity. Here, we
are not interested in describing evaluation mechanisms for each of them. In fact,
for the functional-logic query language (i.e. based on equality and inequality
constraints), an evaluation mechanism has been already studied in 3, 6). Here,
our interest is focused on showing three kinds of equivalent query syntaxis, and
the development of operational semantics for the formalisms based on extensions
of relational languages is considered as future work.

1.3 Organization of the Paper
The organization of this paper is as follows. Section 2 describes the

data model; Section 3 presents a safe functional logic query language based on
(in)equality constraints; Section 4 defines the extended safe relational calculus;
Section 5 shows the extended relational algebra; Section 6 states the equivalence
results between all the query languages; Section 7 shows a precise comparison
between the related work and the proposed approach; and finally, Section 8
shows the conclusions and future work. In addition, we have included an Ap-
pendix wherein we show the proofs of lemmas needed for the equivalence results
presented in Section 6.

§2 The Data Model
Our data model consists of complex values and partial information,

which can be handled in a data definition language based on conditional cons-
tructor-based rewriting rules.

2.1 Complex Values
In our framework, we will consider two main kinds of partial information:

undefined information, represented by ⊥, whose meaning is unknown information,

Database Query Languages and Functional Logic Programming 9

although it may exist, and nonexistent information, represented by F, which means
the information does not exist.

Now, let us assume a complex value, storing information about job
salary and salary bonus, by means of a data constructor (like a record) s&b(Sa-
lary, Bonus). Then, we can additionally consider the following kinds of infor-
mation:

s&b(3000, 100) totally defined information, expressing that a person’s salary is 3000 C,
and his(her) salary bonus is 100 C

s&b(⊥, 100) partially undefined information, expressing that a person’s salary bonus
is known, that is 100 C, but not his(her) salary

s&b(3000, F) partially nonexistent information, expressing that a person’s salary is
3000 C, but (s)he has no salary bonus

Next, we will define a set of equality and inequality relations over these
kinds of information. These relations should consider the defined values (i.e. ⊥,
F and totally defined), the defined partial information (i.e. partially undefined

and partially nonexistent information); in addition, these relations should assume
that the undefined value (i.e. ⊥) cannot be compared with other values. Lastly,
these relations are defined as follows:

(1) = (syntactic equality), expressing that two values are syntactically equal ;
for instance, the relation s&b(3000, F) = s&b(3000, F) is satisfied;

(2) ↓ (strong equality), expressing that two values are equal and totally de-
fined ; for instance, the relation s&b(3000, 25) ↓ s&b(3000, 25) holds;

(3) ↑ (strong inequality), where two values are (strongly) different, if they are
different in their defined information; for instance, the relation s&b(3000,
⊥) ↑ s&b(2000, 25) is satisfied;

In addition, we will define their corresponding inequality relations; that
is, 6=, 6↓ and 6↑, representing a syntactic inequality, weak inequality and weak
equality relation, respectively:

(1’) 6= (syntactic inequality), expressing that two values are not syntactically
equal ; for instance, the relation s&b(3000, 100) 6= s&b(4000, 100) is sat-
isfied;

(2’) 6↓ (weak inequality), expressing that two values are different in its defined
information, or they include nonexistent information; for instance, the rela-
tions s&b(3000, 25) 6↓ s&b(4000, 100) and s&b(3000, F) 6↓ s&b (3000, 25)
are satisfied;

(3’) 6↑ (weak equality), expressing that two values are equal, although they
include nonexistent information; for instance, the relations s&b(3000, F) 6↑
s&b(3000, F) and s&b(3000, F) 6↑ s&b(3000,⊥) are satisfied.

10 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

As we have just mentioned, the relations if strong equality and strong
inequality only compare defined information. However the relations weak equality
and weak inequality take into account the (possible) presence of partially non-

existent information. For instance, the relation weak equality considers that the
value F is equal to any value. Now, the question is: “Which is the fact we want
to express?” The answer is the following: values which are not different due to
defined information, and thus we can consider them in some sense (i.e. weak)
“equal”.

Let us remark that the negations (i.e. 6=, 6↓ and 6↑) do not express the
“logical negation” due to the presence of undefined information (i.e. ⊥); for
instance, given the values s&b(3000, 100) and s&b(3000,⊥), then we have that
neither the relation s&b(3000, 100) ↓ s&b(3000,⊥) nor the relation s&b(3000,
100) 6↓ s&b(3000,⊥) are satisfied.

Next, we will show the needed technical preliminaries for defining the
above equality and inequality relations.

Assuming a set of constructor symbols c, d, . . . DC = ∪nDCn, each
one with an associated arity, the symbols ⊥, F as special cases with arity 0
(not included in DC), and a set V of variables X,Y, . . ., we can build the set
of c-terms with ⊥ and F, denoted by CTermDC,⊥,F(V). C-terms are complex
values, including variables which are, implicitly, universally quantified. We de-
note by cterms(t) the set of (sub)c-terms occurring in t. Given a set of data
constructors S, we say that two c-terms t and t′ have an S-clash if they have
different constructor symbols of S at the same position. In the same way, we
say that two c-terms t and t′ have an S ∪ {F}-clash if they have different sym-
bols of S ∪ {F} at the same position. In addition, we can use substitutions
SubstDC,⊥,F = {η | η : V → CTermDC,⊥,F(V)}, in the usual way, where the
domain of a substitution η, denoted by Dom(η), is defined as usual. id denotes
the identity substitution. Now, the above (in)equality relations can be formally
defined as follows.

Definition 2.1 (Relations over Complex Values 22))

Given two c-terms t, t′ ∈ CTermDC,⊥,F(V), then:
(1) t = t′ ⇔def t and t′ are syntactically equal;
(2) t ↓ t′ ⇔def t = t′ and t ∈ CTermDC(V); that is t is a totally defined

c-term;
(3) t ↑ t′ ⇔def t and t′ have a DC-clash.

In addition, their negations can be defined as follows:

Database Query Languages and Functional Logic Programming 11

(1’) t 6= t′ ⇔def t and t′ have a DC ∪ {F}-clash;
(2’) t 6↓ t′ ⇔def t or t′ contains F as sub-term, or they have a DC-clash;
(3’) 6↑ is defined as the least symmetric relation over CTermDC,⊥,F(V) satis-

fying: X 6↑ X for all X ∈ V, F 6↑ t for all t, and if t1 6↑ t′1, ..., tn 6↑ t′n, then
c(t1, ..., tn) 6↑ c(t′1, ..., t′n) for c ∈ DCn.

Given that complex values can be partially defined, a partial ordering
≤ can be considered. This ordering is defined as the least one satisfying: ⊥ ≤
t, X ≤ X, and c(t1, ..., tn) ≤ c(t′1, ..., t

′
n) if ti ≤ t′i for all i ∈ {1, ..., n} and

c ∈ DCn. The intended meaning of t ≤ t′ is that t is less defined or has
less information than t′. In particular, ⊥ is the bottom element, given that ⊥
represents undefined information; that is, information more refinable can exist.
In addition, F is maximal under ≤ (F satisfies the relations ⊥ ≤ F and F ≤ F),
representing nonexistent information); that is, no further refinable information
can be obtained, given that it does not exist. Definitely, the idea that we want
to state is that F cannot be more refinable; concretely, it cannot be used as a
partial approximation to any c-term.

Now, we can consider (possibly infinite) sets of (partial) c-terms, denoted
by SET (CTermDC,⊥,F(V)). In our framework, these sets are used for represent-
ing multi-valued attributes as well as the output from non-deterministic func-
tions. Finally, we denote by cterms(CV) the set of (sub)c-terms of the c-terms
of CV, where CV ∈ SET (CTermDC,⊥,F(V)).

Given that these sets can be infinite and c-terms can be also infinite,
we need to define an order over sets, representing an approximation ordering
over (possibly infinite) sets of c-terms. This approximation ordering is defined
as follows: given CV1, CV2 ∈ SET (CTermDC,⊥,F(V)), then CV1 v CV2 iff for
all t1 ∈ CV1 there exists t2 ∈ CV2 such that t1 ≤ t2, and, in addition, for all
t2 ∈ CV2 there exists t1 ∈ CV1 such that t1 ≤ t2.

Let us remark that a multi-valued attribute or a non-deterministic func-
tion can represent an infinite set of (infinite) values; however, in our framework,
we have that multi-valued attributes and non-deterministic functions will be
lazily handled, in such a way that their corresponding values will be approxi-
mated by finite partial approximations w.r.t. the given order.

Finally, we need to define the following equality and inequality relations
over sets of c-terms.

12 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Definition 2.2 (Relations over Sets of Complex Values)

Given CV1 and CV2 ∈ SET (CTermDC,⊥,F(V)), then:
(1) CV1 ./ CV2 holds, iff there exist t1 ∈ CV1 and t2 ∈ CV2 such that t1 and

t2 are finite and strongly equal ; and
(2) CV1 <> CV2 holds, iff there exist t1 ∈ CV1 and t2 ∈ CV2 such that t1 and

t2 are strongly different ;
and their negations:
(1’) CV1 6./ CV2 holds, iff for all t1 ∈ CV1 and t2 ∈ CV2, we have that t1 and

t2 are weakly different ; and
(2’) CV1 </> CV2 holds, iff for all t1 ∈ CV1 and t2 ∈ CV2, we have that t1 and

t2 are weakly equal.

The above relations are defined for (possibly infinite) sets of (possibly
infinite) values. However, in the case of infinite values and sets, these relations
can be still used, taking finite and partial values. Like lazy functional-logic
languages, our proposed language will handle partial approximations which, in
our case, are built for sets of c-terms, considering the order v. This order ensures
the following nice property: the use of partial approximations is sound, that is,
for every CV1 and CV2 if CV1 ./ CV2 then CV ′1 ./ CV

′
2 for any CV1 v CV ′1 and

CV2 v CV ′2; similarly with the rest of relations (i.e. <>, 6./ and </>).

2.2 Data Definition Language
We propose a data definition language which, basically, consists of data-

base schema definitions, extended database schema definitions, database schema
instance definitions, and database instance definitions.

Briefly, a database schema definition includes relation names, and a se-
quence of attributes for each relation name. For a given database schema, an
extended database schema definition includes, in addition, a set of constructor
and functional symbols. Next, a database schema instance defines a set of tu-
ples including values for the key and non-key attributes. Moreover, a database
instance defines a database schema instance and a set of interpretations for con-
structor and functional symbols. The functions, used by queries, allow us to deal
with recursively defined datatypes. In a database setting, these functions are
called interpreted functions. Finally, the values of tuples included by a database
instance are defined by means of (constructor-based) conditional rewriting rules.
The conditional rewriting rules include conditions which handle equality and
inequality constraints.

Database Query Languages and Functional Logic Programming 13

Definition 2.3 (Database Schemas)

Assuming a Milner’s 24) style polymorphic type system, a database schema
S is a finite sequence of relation schemas R1, . . . , Rm, wherein the relation
names are R1, . . . , Rm, each relation schema Ri, 1 ≤ i ≤ m, has the form
Ri(A1 : T1, . . . , Ak : Tk, Ak+1 : Tk+1, . . . , An : Tn), the attribute names are a
sequence A1, . . . , An, and, finally, the attribute types are T1, . . . , Tn. In each
relation schema Ri, the underlined attributes A1, . . . , Ak represent the key attri-
butes, and Ak+1, . . . , An are the non-key attributes, denoted by the sets Key(Ri)
and NonKey(Ri), respectively. Finally, the sets of attribute names of any two
relation schemas are disjoint. We can assume attribute names qualified with the
relation name when the attribute names coincide.

The sequence of values of the key attributes of a tuple is assumed to
identify this tuple. Although a relation may include several sequences of key
attributes, we have that one of these sequences should identify the tuples of
the relation (such as a primary key). Finally, given a relation schema Ri(A1 :
T1, . . . , Ak : Tk, Ak+1 : Tk+1, . . . , An : Tn), then we denote by nAtt(Ri) = n

and nKey(Ri) = k, the number of attributes and key attributes defined in the
relation schema Ri, respectively.

Definition 2.4 (Extended Database Schemas)

An extended database schema D is a triple (S,DC, IF), where S is a database
schema, DC = ∪n≥0DC

n is a set of constructor symbols, and IF = ∪n≥0IF
n

represents a set of interpreted function symbols.

We denote the set of defined schema symbols of an extended database
schema D (i.e. relation and non-key attribute symbols of D) by DSS(D), and
the set of defined symbols of D by DS(D) (i.e. DSS(D) together with IF). Let
us remark that the instances for an extended database schema D = (S,DC, IF)
(defined above) will require tuples for S, including sets of c-terms built from
DC, and the interpreted functions of IF are defined for terms built from DC.
As an example of extended database schema, we can consider the following one:

S

{
person job(name : people, age : nat, address : dir, job id : job, boss : people)
job information(job name : job, salary : nat, bonus : nat)

person boss job(name : people, boss age : cbossage, job bonus : cjobbonus)
peter workers(name : people, work : job)

DC

john : people, mary : people, peter : people
lecturer : job, associate : job, professor : job
add : string× nat → dir
b&a : people× nat → cbossage
j&b : job× nat → cjobbonus

IF
{

retention for tax : nat → nat

14 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

where S includes the relation schemas person job (storing information about
people and their jobs) and job information (storing generic information about
jobs), and the “views” person boss job and peter workers, considered as such,
since they will take key attribute values from the set of key values defined for
the relation schema person job.

The first view, person boss job, will include, for each person, pairs in
the form of records constituted by: (a) his/her boss and boss’ age, by using the
data constructor b&a (attribute bos age); and (b) his/her job and job salary
bonus, by using the data constructor j&b (attribute job bonus). The second
view, peter workers, will include workers whose boss is peter. The set DC
includes constructor symbols for the types people, job, dir, cbossage and
cjobbonus, and IF defines the interpreted function symbol retention for tax,
which will compute the ’tax free’ salary.

In addition, we can consider extended database schemas involving (pos-
sibly) infinite database instances (i.e. infinite tuples and tuples with infinite
values). For instance, we can consider the following extended database schema,
which shows how to handle simple spatial objects.

S

{
2Dpoint(coord : cpoint, color : ccolor)
2Dline(origin : cpoint, dir : orientation, next : cpoint, points : cpoint,

list of points : list(cpoint))

DC

{
white : ccolor, red : ccolor, black : ccolor, . . .
north : orientation, south : orientation, east : orientation, west : orientation, ...
[] : list A, [|] : A× list A → list A
p : nat× nat → cpoint

IF
{

select : (list A) → A

Here, the relation schemas 2Dpoint and 2Dline are defined in order to represent
bidimensional points and lines, respectively. 2Dpoint includes the point coor-
dinates (attribute coord) and color. Lines represented by 2Dline are defined
by using a starting point (attribute origin) and direction (attribute dir). Fur-
thermore, next indicates the next point to be drawn in the line, points stores
the (infinite) set of points of this line, and list of points the (infinite) list
of points of the line. Here, we can see the double use of complex values: (1)
attribute points as a set (which can be implicitly assumed); and (2) attribute
list of points as a list of values. Let us remark that the attribute points

represents the infinite set of points of a line. However, we can handle a finite
approximation to this set, concretely, a subset of the points in such a way that
we can use the relations ./ and <> for comparing this attribute with another
finite set of values. Obviously, it only works in lucky cases: the relations ./ and

Database Query Languages and Functional Logic Programming 15

<> can deliver neither true nor false, when one of the sets is infinite, and the
relations cannot be checked for finite and partial approximations. This is the
case in which laziness cannot be useful.

Definition 2.5 (Schema Instances)

Given a database schema S with sequence of relation names R1, . . . , Rp, then
a schema instance S of S is a sequence of relation instances R1, . . .Rp, where
each Ri is an instance of the relation Ri (1 ≤ i ≤ p). Now, each Ri includes a
(possibly infinite) set of tuples of the form (V1, . . . , Vn), where:

(1) n = nAtt(Ri);
(2) each Vj (1 ≤ j ≤ nKey(Ri)) satisfies that Vj ∈ CTermDC,F(V); and
(3) Vl ∈ SET (CTermDC,⊥,F(V)) for each nKey(Ri) + 1 ≤ l ≤ n.

With respect to the above Definition, we have that the key attribute
values have to be one-valued and they cannot include⊥. As will be seen later, the
form of the rules that define the key attribute values will justify this restriction.
However, non-key attributes can be multi-valued with an infinite set of values
and infinite values. In this case, the non-deterministic nature of the rules that
define the non-key attribute values will justify this restriction. In addition,
the attribute values can be non-ground (i.e. including variables), wherein the
variables are implicitly universally quantified. From now on, and in order to
simplify the notation, we assume that the instance of a relation name R, will
be denoted by calligraphic style, such as R. Finally, let us remark that we can
assume that attribute values are typed in the corresponding attribute types;
however types are not necessary for the correctness results of our approach.

Definition 2.6 (Database Instances)

A database instance D for an extended database schema D = (S,DC, IF) is a
triple

(S,DC, IF)
where S is a schema instance of the database schema S, DC = CTermDC,⊥,F(V),
and IF is a set of function interpretations defined as fD : CTermDC,⊥,F(V)n →
SET (CTermDC,⊥,F(V)) for each f ∈ IFn, where each fD is monotonic; that is,
fD(t1, . . . , tn) v fD(t′1, . . . , t

′
n) if ti ≤ t′i, 1 ≤ i ≤ n.

Functions are monotonic w.r.t. the approximation ordering defined over
c-terms (i.e. ≤). Deterministic functions define a unitary set; otherwise they
represent non-deterministic functions, which can represent a set of c-terms.

16 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Next, we will show an example of schema instances for the relation
schemas person job, job information, and ”views” person boss job and pe-
ter workers:

person job

{
(john, {⊥}, {add(′6th Avenue

′
, 5)}, {lecturer}, {mary, peter})

(mary, {⊥}, {add(′7th Avenue
′
, 2)}, {associate}, {peter})

(peter, {⊥}, {add(′5th Avenue
′
, 5)}, {professor}, {F})

job information

{
(lecturer, {1500}, {F})
(associate, {2500}, {F})
(professor, {4000}, {1500})

person boss job

{
(john, {b&a(mary,⊥), b&a(peter,⊥)}, {j&b(lecturer, F)})
(mary, {b&a(peter,⊥)}, {j&b(associate, F)})
(peter, {b&a(F,⊥)}, {j&b(professor, 1500)})

peter workers

{
(john, {lecturer})
(mary, {associate})

As can be seen, each instance tuple includes the key attribute values,
as well as the non-key attribute values grouped by sets of c-terms. Firstly, in
the instance of the relation schema person job, all the tuples include the value
⊥ for the attribute age, representing undefined information; that is, information
which has not been included in the database, although it can exist. Secondly,
the third tuple in the instance of the relation person job includes the symbol
F in the attribute boss, representing nonexistent information; that is, peter has
no boss. In the same way, the first and second tuple in the instance of the
relation job information also include nonexistent information, expressing that
jobs lecturer and associate have no salary bonus.

Finally, the presence of partially undefined and partially nonexistent infor-
mation occurs in the instance of the ”view” person boss job. For instance, the
first tuple includes partially undefined, b&a(mary,⊥), and partially nonexistent,
j&b(lecturer, F), information; in the first case, b&a(mary,⊥) expresses that
john’s boss is known (i.e. mary), but mary’s age is undefined (there can exist
the age, but it is unknown). In the second case, j&b(lecturer, F) expresses that
john’s job is lecturer, but john has no salary bonus (F).

With respect to the modelling of (possibly) infinite databases, we can
consider the following (infinite) instances for the relation schemas 2Dpoint and
2Dline with (possibly infinite) values in their attributes:

2Dpoint
{

(p(0, 0), {red}), (p(0, 1), {white}), (p(1, 0), {F}), . . .

2Dline

{
(p(0, 0), north, {p(0, 1)}, {p(0, 0), p(0, 1), . . .}, {[p(0, 0), p(0, 1), p(0, 2), . . .]}), . . .
(p(1, 0), north, {p(1, 1)}, {p(1, 0), p(1, 1), . . .}, {[p(1, 0), p(1, 1), p(1, 2), . . .]}), . . .
(p(1, 1), east, {p(2, 1)}, {p(1, 1), p(2, 1), . . .}, {[p(1, 1), p(2, 1), p(3, 1), . . .]}), . . .

In order to handle infinite database instances, we deal with a finite rep-
resentation of these possibly infinite sets, by considering finite subsets of the

Database Query Languages and Functional Logic Programming 17

database instance and partial approximations to infinite values. For example, a
partial approximation to the instance of the relation 2Dline could include tuples
of the form:

2Dline

{
(p(0, 0), north, {p(0, 1)}, {p(0, 0), p(0, 1) | ⊥}, {[p(0, 0), p(0, 1), p(0, 2) | ⊥]})
(p(1, 0), north, {p(1, 1)}, {p(1, 0), p(1, 1) | ⊥}, {[p(1, 0), p(1, 1), p(1, 2)|⊥]}), . . .
(p(1, 1), east, {p(2, 1)}, {p(1, 1), p(2, 1) | ⊥}, {[p(1, 1), p(2, 1), p(3, 1)|⊥]}), . . .

By using this partial approximation, we can compare attribute points

with the relations ./ or <>; for instance, consider the lines with key attribute va-
lues (p(1, 0), north) and (p(1, 1), east). In this case, the relations points p(1, 0)
north ./ points p(1, 1) east and points p(1, 0) north <> points p(1, 1) east
are true, given that both lines intersect (i.e. ./ is satisfied), but they are diffe-
rent lines (i.e. <> holds). In this way, we can handle these infinite sets in our
approach.

On the other hand, the values included by a database instance (i.e. key
and non-key attribute values, and interpreted function values) for an extended
database schema are stated by means of constructor-based conditional rewriting
rules. Next, we formally define the conditional rewriting rules.

Definition 2.7 (Conditional Rewriting Rules)

Given a database instance D = (S,DC, IF) of an extended database schema
D = (S,DC, IF), then a constructor-based conditional rewriting rule RW for a
symbol H ∈ DS(D) has the form H t1 . . . tn := r ⇐ C, representing that r is
the value of H t1 . . . tn, whenever the condition C is satisfied. In this kind of
rule, we have that:

(1) (t1, . . . , tn) is a linear tuple (i.e. each variable in it occurs only once) with
ti ∈ CTermDC(V);

(2) r ∈ TermD(V), where TermD(V) represents the terms or expressions
built from D (i.e. terms or expressions built from DC, DS(D) and varia-
bles of V);

(3) C is a set of constraints of the form e ./ e′, e <> e′, e 6./ e′, e </> e′, where
e, e′ ∈ TermD(V); and

(4) extra variables are not allowed, i.e. var(r) ∪ var(C) ⊆ var(t1, . . . , tn).

Let us remark that both ⊥ and F are only used at the semantic level,
and thus they are not included in TermD(V). However, each term or expression
e represents a set of c-terms (i.e. an element of SET (CTermDC,⊥,F(V))), in
such a way that the set of constraints C allows us to compare sets of c-terms
accordingly to the semantics of the relations defined over sets of complex values;
that is, ./,<>, 6./,</> (see Definition 2.2).

18 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Finally, rules cannot include extra variables in conditions. This is due
to the handling of negation in functional-logic programming. Extra variables in
negative conditions are universally quantified and they would have a sophisti-
cated and costly operational behavior.

Definition 2.8 (Database Instance Values)

Given a database instance D = (S,DC, IF) for an extended database schema
D = (S,DC, IF), then the database instance values of D are defined by means
of the following set of conditional rewriting rules:

• Rules of the form R t1 . . . tk := r ⇐ C , where r is a term of type typeok

which consists of a unique special value ok (representing a shorthand of
object key), and nKey(R) = k; this kind of rules allows us to define a
new tuple with key attribute values t1, . . . , tk in the instance R of S for
the relation R of S;

• Rules A t1 . . . tk := r ⇐ C, where A ∈ NonKey(R), R ∈ S, nKey(R) =
k, set r as the value of the non-key attribute A in the tuple with key
values t1, . . . , tk of the instance R of S for the relation R of S, whenever
the set of constraints C holds.

• Rules f t1 . . . tn := r ⇐ C, where f ∈ IFn, set r as the value of f t1 . . . tn
whenever the set of constraints C holds.

In all the kinds of rules, t1, . . . , tn, r can be non-ground values, and
thus the key and non-key attribute values can also represent non-ground values.
Rules for the non-key attributes A t1 . . . tk := r ⇐ C are implicitly constrained
to the form A t1 . . . tk := r ⇐ R t1 . . . tk ./ ok, C, in order to guarantee that
t1, . . . , tk are key values defined in a tuple of R. For instance, the values of the
above database instance relative to people and job information can be defined
by the following rules:

person job

person job john := ok. person job mary := ok.
person job peter := ok.
address john := add(

′
6th Avenue

′
, 5).

address mary := add(
′
7th Avenue

′
, 2).

address peter := add(
′
5th Avenue

′
, 5).

job id john := lecturer. job id mary := associate.
job id peter := professor.
boss john := mary. boss john := peter.
boss mary := peter.

job information

job information lecturer := ok.
job information associate := ok.
job information professor := ok.
salary lecturer := retention for tax 1500.
salary associate := retention for tax 2500.
salary professor := retention for tax 4000.
bonus professor := 1500.

Database Query Languages and Functional Logic Programming 19

person boss job

{
person boss job Name := ok ⇐ person job Name ./ ok.
boss age Name := b&a(boss Name, address (boss Name)).
job bonus Name := j&b(job id (Name), bonus (job id (Name))).

peter workers

{
peter workers Name := ok ⇐ person job Name ./ ok, boss Name ./ peter.
work Name := job id Name.

retention for tax
{

retention for tax Fullsalary := Fullsalary− (0.2 ∗ Fullsalary).

Let us remark that the condition C can be used in order to define views,
such as shown in the rule that defines the key attribute values for person boss-
job (i.e. person boss job Name := ok ⇐ person job Name ./ ok). Here, this

rule indicates that the key attribute values defined for person job are also valid
for the view person boss job.

Furthermore, it is important to remark that undefined information is in-
terpreted, whenever there are no rules for a given non-key attribute (for instance,
attribute age in relation person job; see the set of values {⊥} in the previous
presented instance of the relation person job for all defined key values). How-
ever, whenever a non-key attribute is defined by at least one rule, it is assumed
that the tuples for which either the attribute is not defined or the constraints of
the rule are not satisfied, include nonexistent information as value (for instance,
attribute boss in relation person job for the key value peter; that is, we set
boss values for john and mary, but not for peter). This behavior fits with the
failure of reduction of conditional rewriting rules proposed in 22). Once ⊥ and
F are introduced as special cases of attribute values, the view person boss job

will include partially undefined and partially nonexistent information. Finally, as
previously mentioned, and due to the form of defining the key attribute values,
we have that person boss job and peter workers can be considered as ”views”
defined from the relation schema person job.

Comparing our approach with other kinds of database languages based
on declarative programming (i.e. logic and functional languages), we have that
our data model enriches the data models proposed by functional and logic pro-
gramming due to, mainly, the presence of multi-valued attributes in the form of
(possibly infinite) sets of (possibly infinite) c-terms; for instance, we can consider
the attribute points with the (infinite) set of values {p(0, 0), p(0, 1), p(0, 2), . . .}.
As far as we know, none of above approaches (i.e. functional and logic data
model) is able to handle this kind of information. And even more, the use of F

in order to explicitly represent the non-existence of values for a given attribute
introduces a new mechanism for the handling of negation in deductive databases.
Finally, let us remark that the proposed query languages in the following sections
will handle nicely both aspects (i.e. (possibly infinite) sets of (possibly infinite)

20 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Table 1 Examples of (Functional-Logic) Queries

Query Description Answer

Handling of Multi-valued Attributes

boss X ./ peter. who has peter as boss?

{
Y/john
Y/mary

address (boss X) ./ Y,
job id X 6./ lecturer.

To obtain non-lecturer
people and their
bosses’addresses

{
X/mary,
Y/add(

′
5th Avenue

′
, 5)

Handling of Partial Information

job bonus X </>
j&b(associate, Y).

To obtain people whose
job is equal to

associate, and their
salary bonuses, although

they do not exist

{
X/mary, Y/F

Handling of Infinite Databases

select (list of points p(0, 0) Z)
./ p(0, 2).

To obtain the orientation
of the line from
p(0, 0) to p(0, 2)

{
Z/north

c-terms and nonexistent information).

§3 Safe Functional Logic Query Language
Now, we can consider a (functional logic) query language, involving

queries similar to the condition of a conditional rewriting rule. For instance, the
(functional logic) query Qs ≡ retention for tax X ./ salary (job id peter)
w.r.t the instances of the relation schemas person job and job information,
requests peter’s full salary, obtaining as answer {X/4000}. Table 1 shows some
other examples, with their corresponding meanings and expected answers.

On the other hand, in database theory it is known that any query lan-
guage must ensure the so-called property of domain independence 2). A query
is domain independent, whenever the query satisfies, properly, two conditions:
(a) the query output over a finite relation is also a finite relation; and (b) the
output relation only depends on the input relations. In general, it is undecidable,
and thus syntactic conditions have to be developed in such a way that, only the
so-called safe queries (satisfying these conditions) ensure the property of domain
independence. For example, in 2) the variables occurring in queries must be range
restricted. In our case, we generalize the notion of range restriction to c-terms.
In addition, the safety conditions should ensure the equivalence between the
functional logic query language and the proposed alternative query formalisms,
and based on extensions from relational calculus and algebra. Now, in order to
define the safety conditions, we need the following previous definitions.

Database Query Languages and Functional Logic Programming 21

Definition 3.1 (Query Keys)

Given an extended database schema D = (S,DC, IF), then the set of query keys
of a key attribute Ai ∈ Key(R) (R ∈ S) occurring in a term e ∈ TermD(V),
denoted by query key(e, Ai), is defined as follows:

query key(e,Ai) =def {ti ∈ CTermDC,F(V) | there exists an expression
of the form H e1 . . . ti . . . ek occurring in e and

H ∈ {R} ∪NonKey(R)}

Now, the set of query keys in a query Q w.r.t. an extended database schema
D = (S,DC, IF) is defined as follows:

query key(Q, D) =def
∪

Ai∈Key(R),R∈S query key(Q, Ai) where

query key(Q, Ai) =def
∪

e♦qe′∈Q (query key(e,Ai) ∪ query key(e′, Ai))

with ♦q ∈ {./,<>, 6./,</>}.

The underlying meaning of this Definition is that a query will select
tuples of a database instance from the defined key attribute values. In fact, the
query keys of a query represents the set of the selected key attribute values.
Then, the range restricted condition will ensure that each c-term occurring in a
query is either a query key or depends on a query key. In this way, we ensure that
variables are always used for retrieving (sub-terms of) key or non-key attributes
values.

Definition 3.2 (Range Restricted C-Terms of Queries)

Given an extended database schema D = (S,DC, IF) and a query Q, then a
c-term t is range restricted in Q w.r.t. D, if either:

(1) t belongs to ∪
s∈query key(Q,D) cterms(s),or

(2) there exists a constraint e ♦q e′, ♦q ∈ {./,<>, 6./,</>}, such that t belongs
to cterms(e) (resp. cterms(e′)) and every c-term occurring in e′ (resp.
e) is range restricted in Q.

In the above Definition, cterms(e) denotes the set of (sub)c-terms of a
term e ∈ TermD(V). Range restricted c-terms occur in the scope of a relation
symbol or a non-key attribute symbol, or they are compared (by means of equal-
ity and inequality constraints) with c-terms in the scope of a relation symbol or
a non-key attribute symbol. Therefore, we have that all of them will take values
from a defined schema instance.

22 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Definition 3.3 (Safe Queries)

Given an extended database schema D = (S,DC, IF) and a query Q, then Q is
safe w.r.t D if all c-terms occurring in Q are range restricted in Q w.r.t D.

For instance, let us consider the above query: Qs ≡ retention for

tax X ./ salary(job id peter). Qs is safe, since the constant peter is a query
key (and thus range restricted); finally, the variable X is also range restricted,
since X occurs in the right-hand of the query and in the left-hand side there
are only range restricted c-terms (i.e. peter). Now, we will provide semantic
foundations to the query language based on equality and inequality constraints.
With this aim, firstly, we need to define the denoted values and the active domain
of a database term in a functional logic query.

Definition 3.4 (Denotation of Database Terms)

Given a term e ∈ TermD(V) and a database instance D = (S,DC, IF) of an
extended database schema D = (S,DC, IF), then the denotation of e in D under
a substitution η, represented by [|e|]Dη, is defined as follows:

(1) [|R e1 . . . ek |]Dη for all R ∈ S:
? [|R e1 . . . ek |]Dη =def {ok}, if there exist a tuple (V1, . . . , Vk, Vk+1, . . . ,

Vn) ∈ R, where R is a schema instance of S for the relation R of S
and k = nKey(R), and a substitution ψ ∈ SubstDC,⊥,F, such that
([|e1|]Dη, . . . , [|ek|]Dη) = (V1ψ, . . . , Vkψ) and Viψ ∈ CTermDC,F(V)
with 1 ≤ i ≤ k;

? [|R e1 . . . ek |]Dη =def {F}, if for all tuple (V1, . . . , Vk, Vk+1, . . . , Vn) ∈
R, with R instance of the relation R and k = nKey(R), and subs-
titution ψ ∈ SubstDC,⊥,F, then [|ei|]Dη 6= Viψ for some i, 1 ≤ i ≤
k. However, there exist tuples (W1, . . . , Zi, . . . ,Wk, . . . ,Wn) ∈ R and
substitutions ψi ∈ SubstDC,⊥,F, such that [|ei|]Dη = Ziψi with Ziψi ∈
CTermDC,F(V) with 1 ≤ i ≤ k;

? [|R e1 . . . ek |]Dη =def {F}, if η = id and for all tuple (V1, . . . , Vk, Vk+1,

. . . , Vn) ∈ R, with R instance of the relation R and k = nKey(R), and
substitution ψ ∈ SubstDC,⊥,F, then [|ei|]Dη 6= Viψ for some i, 1 ≤ i ≤ k;

? [|R e1 . . . ek |]Dη =def {⊥} otherwise;
(2) [|Ai e1 . . . ek |]Dη for all Ai ∈ NonKey(R):

? [|Ai e1 . . . ek |]Dη =def Viψ, if there exist a tuple (V1, . . . , Vk, Vk+1,

. . . , Vi, . . . , Vn) ∈ R, withR instance of the relationR and i > nKey(R)
= k, and a substitution ψ ∈ SubstDC,⊥,F, such that ([|e1|]Dη, . . . , [|ek|]Dη)

Database Query Languages and Functional Logic Programming 23

= (V1ψ, . . . , Vkψ) and Vjψ ∈ CTermDC,F(V) with 1 ≤ j ≤ k;
? [|Ai e1 . . . ek |]Dη =def {F}, if [|R e1 . . . ek |]Dη = {F};
? [|Ai e1 . . . ek |]Dη =def {⊥} otherwise;

(3) [|X |]Dη =def {X η}, for all X ∈ V;
(4) [|c|]Dη =def {c}, for all c ∈ DC 0 ;
(5) [|c(e1 , . . . , en)|]Dη =def c([|e1 |]Dη, . . . , [|en |]Dη)∗1, for all c ∈ DC n ;
(6) [|f e1 . . . en |]Dη =def f D [|e1 |]Dη . . . [|en |]Dη , for all f ∈ IFn .

The denoted values of a term or expression represent the set of values
that a multi-valued (resp. one-valued) attribute or a non-deterministic (resp.
deterministic) interpreted function defines. Whenever the schema instance in-
cludes variables, we need to instantiate it, in order to obtain the complete set of
values represented by an attribute.

Expressions R e1 . . . ek denotes {ok}, whenever e1, . . . , ek represent the
set of key attribute values in a tuple of the instance R of relation R. On the
other hand, R e1 . . . ek denotes {F} (i.e. fail), whenever e1, . . . , ek are not the
key attribute values of any tuple of the instance R of relation R, although
e1, . . . , ek must be key values defined in the instance R. Therefore, e1, . . . , ek
should represent combinations obtained from key attribute values defined in the
instance R. Otherwise, R e1 . . . ek denotes {⊥}. Expressions Ai e1 . . . ek denote
the values of the non-key attribute Ai (Ai ∈ R) for the tuple with key attribute
values e1, . . . , ek of the instance R of relation R. Moreover, Ai e1 . . . ek denotes
{F} and {⊥} in the same cases as R e1 . . . ek. For instance, considering the
non-key attribute boss, we have that boss mary denotes {peter}, boss robert

denotes {F}, and, finally, boss X denotes {F}.

Definition 3.5 (Active Domain of Database Terms)

Given a database instance D = (S,DC, IF) of an extended database schema
D = (S,DC, IF) and a term e ∈ TermD(V), then the active domain e w.r.t D
and a query Q, denoted by adom(e,D), is defined as follows:

(1) adom(R e1 . . . ek,D) =def {ok, F,⊥}, for all R ∈ S;
(2) adom(Ai e1 . . . ek,D) =def

∪
{ψ∈SubstDC,⊥,F, (V1,...,Vi,...,Vn)∈R} Viψ, for all

Ai ∈ NonKey(R), where R is an instance of relation R;
(3) adom(t,D) =def { t | t ∈ cterms(Viψ), where ψ ∈ SubstDC,⊥,F and

(V1, . . . , Vi, . . . , Vn) ∈ R}, with R schema instance of S, if t ∈ cterms(s),
∗1 To simplify denotation, we write {c(t1, . . . , tn) | ti ∈ Si} as c(S1, . . . , Sn) and

{f(t1, . . . , tn) | ti ∈ Si} as f(S1, . . . , Sn) where S′is are certain sets.

24 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

with s ∈ query key(Q, Ai) and Ai ∈ Key(R); otherwise {⊥}, for all
t ∈ CTermDC,⊥,F(V);

(4) adom(c(e1, . . . , en),D) =def c(adom(e1,D), . . . , adom(en,D)), if c(e1, . . . ,
en) is not a c-term, for all c ∈ DCn, n > 0;

(5) adom(f e1 . . . en,D) =def fDadom(e1,D) . . . adom(en,D), for all f ∈
IFn.

The active domain of expressions involving non-key attributes represents
the complete set of values defined in the schema instance for the corresponding
attribute (see case 2 in the above Definition). For instance, adom(boss mary,D) =
{mary, peter, F}. Similarly with the query keys, whose active domain includes
the complete set of c-terms defined in the schema instance for the corresponding
key attribute (see case 3 in the above Definition). As can be seen in the next
Definition, both sets are used for defining the set of query answers.

Definition 3.6 (Query Answers)

Given a database instance D = (S,DC, IF) of an extended database schema
D = (S,DC, IF) and a query Q, then η is an answer of Q w.r.t. D (in symbols
(D, η) |=Q Q) in the following cases:

(1) (D, η) |=Q e ./ e ′, if there exist t ∈ [|e|]Dη and t′ ∈ [|e ′|]Dη, such that
t ↓ t′ and t, t′ ∈ adom(e,D) ∪ adom(e′,D);

(2) (D, η) |=Q e <> e ′, if there exist t ∈ [|e|]Dη and t′ ∈ [|e ′|]Dη, such that
t ↑ t′ and t, t′ ∈ adom(e,D) ∪ adom(e′,D);

(3) (D, η) |=Q e 6./ e ′ if for all t ∈ [|e|]Dη and t′ ∈ [|e ′|]Dη, then t 6↓ t′ and
t, t′ ∈ adom(e,D) ∪ adom(e′,D);

(4) (D, η) |=Q e </> e ′, if for all t ∈ [|e|]Dη and t′ ∈ [|e ′|]Dη, then t 6↑ t′ and
t, t′ ∈ adom(e,D) ∪ adom(e′,D).

The active domain is used in order to restrict the answers obtained from
a query against a given database instance. In fact, the use of the active domain
allows us to ensure the property of domain independence in the following sense:
the query output will only depend on the input relation instances. For instance,
let us consider the query Q0 ≡ boss mary 6./ Y. Q0 has as answers η1 = {Y/mary}
and η2 = {Y/F}, since the variable Y takes values from the active domain of
boss mary, defined as adom(boss mary,D) = {mary, peter, F}. Now, we have
that boss mary denotes peter, and, from adom(boss mary,D), we can conclude
that peter 6↓ mary and peter 6↓ F are satisfied. Note that we could have consi-
dered the answer {Y/lecturer}, since the relation peter 6↓ lecturer is also

Database Query Languages and Functional Logic Programming 25

satisfied. However, this answer causes the fact of not ensuring the property of
domain independence, since, now, the query output does not depend on the
input relation instances. In fact, if we consider {Y/lecturer} as a valid answer,
then we could consider as many answers as we wish, and thus, obtain an infinite
set of answers when the database is finite; definitely, the domain independence
is not satisfied. Therefore, in our case, we must restrict the answers to values
considered in the active domain; this means that the value lecturer does not
belong to adom(boss mary,D), and thus {Y/lecturer} is not a valid answer for
the query boss mary 6./ Y. In this way, equality and inequality constraints will be
solved by using only values defined in the database. But, what happens to infinite
database instances? How do they affect to the domain independence property?
the answer is the following: given that the database instance is infinite, then we
can obtain infinite answers from the input relation instance, and thus this does
not mean that the domain independence property is not satisfied.

Definition 3.7 (Set of Query Answers)

Given a database instance D = (S,DC, IF) and a safe query Q, then the
set of answers of Q w.r.t. D, denoted by Ans(D,Q), is defined as follows:
Ans(D,Q) =def {(X1η, . . . , Xnη) | Dom(η) ⊆ var(Q) = {X1, . . . , Xn}, (D, η)
|=Q Q}.

It can be proved that each safe query is domain independent. Therefore,
a query is domain independent, whenever the query satisfies, properly, two con-
ditions: (a) the query output over a finite relation is also a finite relation; and
(b) the output relation only depends on the input relations. The interested reader
can check in 5) the proofs of such results. The safety conditions are not only
required for ensuring the domain independence property, but also to state the
equivalence of the functional logic query language with the extended relational
calculus and algebra, presented here.

§4 An Extended Relational Calculus
In this section, we present the proposed extension of the relational cal-

culus, by showing its syntax, safety conditions, and, finally, its semantics.

Definition 4.1 (Atomic Formulas)

Given an extended database schema D = (S,DC, IF), then atomic formulas are
expressions of the form:

26 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

(1) R(x1, . . . , xk, xk+1, . . . , xn), where R is a relation schema of S, the vari-
ables xi are pairwise distinct, k = nKey(R), and n = nAtt(R);

(2) x = t, where x ∈ V and t ∈ CTermDC(V);
(3) t ⇓ t′ or t ⇑ t′, where t, t′ ∈ CTermDC(V);
(4) e / x, where e ∈ TermDC,IF (V)∗2 and x ∈ V.

In the above Definition, (1) represents relation predicates, (2) syntactic equality
equations, (3) (strong) equality and inequality equations with the same meaning
as the corresponding relations ↓ and ↑ (see Section 2.1; concretely, Definition
2.1). Finally, (4) is an approximation equation, representing approximation val-
ues obtained from interpreted functions.

Definition 4.2 (Calculus Formulas)

Given a database instance D = (S,DC, IF) of an extended database schema
D = (S,DC, IF), then a calculus formula ϕ against D has the form:

{x1, . . . , xn | φ}

such that
• φ is a conjunction of the form φ1 ∧ . . . ∧ φn where each φi has the form

ψ or ¬ψ, and each ψ is an existentially quantified conjunction of atomic
formulas.

• variables xi are the free variables of φ, denoted by free(φ)
• and finally, variables xi occurring in all atomic formulas of the form R(x̄)

are distinct; similarly with the variables x occurring in the approximation
equations e / x.

Formulas can be built from other logical connectives, such as ∀,→,∨,↔,
whenever they are logically equivalent to the calculus formulas defined in Defini-
tion 4.2. As an example of calculus formula, we have that the previous functional
logic query Qs ≡ retention for tax X ./ salary (job id peter) can be wri-
tten in the proposed relational calculus as follows:

ϕs ≡ {x | (∃y1.∃y2.∃y3.∃y4.∃y5. person job(y1, y2, y3, y4, y5) ∧ y1 = peter ∧
∃z1.∃z2.∃z3. job information(z1, z2, z3) ∧ z1 = y4 ∧ ∃u.
retention for tax x / u ∧ z2 ⇓ u)}

In this case, ϕs expresses the following meaning: to obtain the full salary,

∗2 Terms which do not include schema symbols (i.e. relation symbols and non-key attribute
symbols).

Database Query Languages and Functional Logic Programming 27

that is, retention for tax x/ u and ∃z1.∃z2.∃z3.job information(z1, z2, z3) ∧
z2 ⇓ u, for peter, that is, ∃y1. . . .∃y5. person job(y1, . . . , y5) ∧ y1 = peter ∧
z1 = y4.

Like the functional logic query language, and as usual in the database
query formalisms, we need to ensure the property of domain independence in the
proposed calculus. In fact, the domain independence property in the extended
relational calculus will be preserved by ensuring safety conditions over atomic
formulas, and safety conditions over bounded variables. With this aim, firstly,
we need to define the following sets of variables occurring in a calculus formula
ϕ and w.r.t. an extended database schema D = (S,DC, IF):

(1) Key variables.
formula key(ϕ) = {xi | there exists R(x1, . . . , xi, . . . , xn) occurring in ϕ

and 1 ≤ i ≤ nKey(R)}, where R is a relation schema of S;
(2) Non-key variables.

formula nonkey(ϕ) = {xj | there exists R(x1, . . . , xj , . . . , xn) occurring
in ϕ and nKey(R) + 1 ≤ j ≤ n}, where R is a relation schema of S; and

(3) Approximation variables.
approx(ϕ) = {x | there exists e / x occurring in ϕ}.

Definition 4.3 (Safe Atomic Formulas)

An atomic formula occurring in a calculus formula ϕ is safe in the following
cases:

(1) R(x1, . . . , xk, xk+1, . . . , xn) is safe, if the variables x1, . . . , xn are bounded
in ϕ and for each xi, i ≤ nKey(R), there exists one syntactic equality
equation xi = ti occurring in ϕ;

(2) x = t is safe, if the variables occurring in t are distinct from the variables
of formula key(ϕ), and x is a variable of formula key(ϕ);

(3) t ⇓ t′ and t ⇑ t′ are safe, if the variables occurring in t and t′ are distinct
from the variables of formula key(ϕ);

(4) e / x is safe, if the variables occurring in e are distinct from the variables
of formula key(ϕ), and x is bounded in ϕ.

Definition 4.4 (Range Restricted C-Terms of Calculus Formulas)

A c-term t is range restricted in a calculus formula ϕ, if either:
(1) t occurs in formula key(ϕ) ∪ formula nonkey(ϕ); or
(2) there exists one equation e♦c e′ (♦c ∈ {=,⇑,⇓, /}) in ϕ, such that t

belongs to cterms(e) (resp. cterms(e′)) and every c-term of e′ (resp. e)
is range restricted in ϕ w.r.t. D.

28 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Table 2 Examples of Calculus Formulas

Query Calculus Formula

boss X ./ peter.

{
{x | (∃y1.∃y2.∃y3.∃y4.∃y5. person job(y1, y2, y3, y4, y5) ∧ y1 = x ∧
y5 ⇓ peter)}

address (boss X) ./ Y,
job id X 6./ lecturer.

{ {x, y | (∃y1.∃y2.∃y3.∃y4.∃y5. person job(y1, y2, y3, y4, y5) ∧ y1 = x ∧
∃z1.∃z2.∃z3.∃z4.∃z5.person job(z1, z2, z3, z4, z5) ∧ z1 = y5 ∧ z3 ⇓ y)
∧(∀v4.((∃v1.∃v2.∃v3.∃v5. person job(v1, v2, v3, v4, v5) ∧ v1 = x) →
¬v4 ⇓ lecturer))}

job bonus X </>
j&b(associate, Y).

{
{x, y | (∀y3.(∃y1.∃y2. person boss job(y1, y2, y3) ∧ y1 = x) → ¬y3 ⇑
j&b(associate, y))}

select (list of
points p(0, 0) Z)
./ p(0, 2).

{
{z | (∃y1.∃y2.∃y3.∃y4.∃y5. 2Dline(y1, y2, y3, y4, y5) ∧ y1 = p(0, 0) ∧
y2 = z ∧ ∃u.select y5 / u ∧ u ⇓ p(0, 2))}

Range restricted c-terms are variables occurring in the scope of a relation
predicate, or c-terms compared (by means of syntactic, strong (in)equality, and
approximation equations) with variables in the scope of a relation predicate.
Therefore, all of them take values from the database instance.

Definition 4.5 (Safe Formulas)

A calculus formula ϕ is safe, if the following conditions are satisfied:
(1) all c-terms and atomic formulas occurring in ϕ are range restricted and

safe, respectively; and,
(2) the only bounded variables occurring in ϕ are variables of formula key

(ϕ) ∪ formula nonkey(ϕ) ∪ approx(ϕ).

For instance, the previous calculus formula

ϕs ≡ {x | (∃y1.∃y2.∃y3.∃y4.∃y5. person job(y1, y2, y3, y4, y5) ∧ y1 = peter ∧
∃z1.∃z2.∃z3. job information(z1, z2, z3) ∧ z1 = y4 ∧ ∃u.
retention for tax x / u ∧ z2 ⇓ u)}

is safe, since:
(1) the c-term peter is range restricted (by means of y1 = peter), and

the variables u, x are also range restricted (by means of z2 ⇓ u and
retention for tax x / u); in addition, the atomic formulas person job

(y1, y2, y3, y4, y5) and job information(z1, z2, z3) are safe, since the varia-
bles y1, y2, y3, y4, y5 and z1, z2, z3 are bounded, and there exist y1 = peter

and z1 = y4; next, the atomic formulas y1 = peter and z1 = y4 are safe,
since y1 and z1 are variables of formula key(ϕs) and peter and y4 are
distinct from variables of formula key(ϕs); finally, z2 ⇓ u is safe, since z2
and u are distinct from formula key(ϕs), and retention for tax x / u

is also safe, since x is distinct from formula key(ϕs) and u is bounded;
(2) the only bounded variables are y1, y2, y3, y4, y5, z1, z2, z3 and u; that is

formula key(ϕs) ∪ formula nokey(ϕs) ∪ approx(ϕs).

Database Query Languages and Functional Logic Programming 29

Table 2 shows (safe) calculus formulas built from the (safe) functional
logic queries presented in table 1.

Now, we define the proposed semantics for our relational calculus. With
this aim, firstly, we have to consider the calculus terms, which are defined as
terms or expressions built from DC, IF and variables of V, and they are repre-
sented by TermDC,IF (V). Secondly, we need to define the denoted values and
the active domain of the calculus terms; in fact, the same as we did for the
functional logic query language.

Definition 4.6 (Denotation of Calculus Terms)

The denoted values of a calculus term e ∈ TermDC,IF (V) in a database instance
D = (S,DC, IF) of an extended database schema D = (S,DC, IF) w.r.t. a
substitution η, represented by [|e|]Dη, are defined as follows:

(1) [|X |]Dη =def {X η}, for X ∈ V;
(2) [|c|]Dη =def {c}, for c ∈ DC 0 ;
(3) [|c(e1 , . . . , en)|]Dη =def c([|e1 |]Dη, . . . , [|en |]Dη), for all c ∈ DC n , n > 0;
(4) [|f e1 . . . en |]Dη =def f D [|e1 |]Dη . . . [|en |]Dη , for all f ∈ IFn .

Definition 4.7 (Active Domain of Calculus Terms)

The active domain of a calculus term e ∈ TermDC,IF (V) in a calculus formula
ϕ w.r.t a database instance D = (S,DC, IF) of an extended database schema
D = (S,DC, IF), denoted by adom(e,D), is defined as follows:

(1) adom(x,D) =def
∪

{ψ∈SubstDC,⊥,F,(V1,...,Vi,...,Vn)∈R} Viψ, if there exists an

atomic formula R(x1, . . . , xi−1, x, xi+1, . . . , xn) in ϕ, where R is a schema
instance of S for the relation R of S;

(2) adom(x,D) =def adom(e,D), if e / x occurs in ϕ;
(3) adom(x,D) =def {⊥}, otherwise;
(4) adom(c,D) =def {⊥}, if c ∈ DC0;
(5) adom(c(e1, . . . , en),D) =def c(adom(e1,D), . . . , adom(en,D)), if c ∈ DCn,

n > 0 and c(e1, . . . , en) contains variables of the set formula key(ϕ) ∪
formula nonkey(ϕ) ∪ approx(ϕ);

(6) adom(f e1 . . . en,D) =def f
Dadom(e1,D) . . . adom(en,D), if f ∈ IFn.

In the case of key and non-key variables, the active domain contains the
complete set of values defined in the database instance for the corresponding
key and non-key attribute. In the case of approximation variables, the active
domain contains the complete set of values defined for the interpreted function.

30 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

For example, in the atomic formula person job(x1, . . . , x5), the active domain
of x5 (where x5 is a non-key variable, representing the non-key attribute boss)
is adom(x5,D) = {mary, peter, F}, corresponding to the set of values included
in the database instance for the attribute boss. Like the functional logic query
language, the active domain is used in order to restrict the answers obtained
from a calculus formula.

For instance, the following calculus formula ϕ0:

ϕ0 ≡ ¬∃x1.x2.x3.x4.x5.person job(x1, . . . , x5) ∧ x1 = mary ∧ x5 ⇓ y

corresponding to the query Q0 ≡ boss mary 6./ Y, requests people who
are not mary’s boss. In this case, the variable y in the calculus formula is
restricted to take values from the attribute boss of the relation person job;
that is, from the active domain of x5, defined as adom(x5,D) = {peter, mary, F}.
Therefore, the obtained answers are {y/mary} and {y/F}; in fact, the same
answers as computed for the query Q0 ≡ boss mary 6./ Y.

Definition 4.8 (Calculus Formula Answers)

Given a database instance D = (S,DC, IF) of an extended database schema
D = (S,DC, IF) and a calculus formula {x̄ | φ}, then η is an answer of φ w.r.t.
D such that dom(η) ⊆ free(φ) (in symbols (D, η) |=C φ) in the following cases:

(1) (D, η) |=C R(x1, . . . , xn), if there exists a tuple (V1, . . . , Vn) ∈ R (R
is a schema instance of S for the relation R of S) and a substitution
ψ ∈ SubstDC,⊥,F, such that xiη ∈ Viψ for every 1 ≤ i ≤ n, and Vjψ ∈
CTermDC,F(V) for every 1 ≤ j ≤ k;

(2) (D, η) |=C x = t , if xη = tη, and tη ∈ adom(x,D);
(3) (D, η) |=C t ⇓ t ′, if tη ↓ t′η, and tη, t′η ∈ adom(t,D) ∪ adom(t′,D);
(4) (D, η) |=C t ⇑ t ′, if tη ↑ t′η, and tη, t′η ∈ adom(t,D) ∪ adom(t′,D);
(5) (D, η) |=C e / x , if xη ∈ [|e|]Dη, and xη ∈ adom(e,D);
(6) (D, η) |=C φ1 ∧ φ2 , if D satisfies φ1 and φ2 under η;
(7) (D, η) |=C ∃x .φ, if there exists v, such that D satisfies φ under η ◦ {x/v};
(8) (D, η) |=C ¬φ, if (D, η) 6|=C φ, where:
(8.1) (D, η) 6|=C R(x1, . . . , xn), if for all tuple (V1, . . . , Vn) ∈ R (R is a

schema instance of S for the relation R of S) and substitution ψ ∈
SubstDC,⊥,F, then xiη 6= Viψ for some i with 1 ≤ i ≤ n, but there exist
tuples (W1, . . . , Zi, . . . ,Wn) ∈ R and substitutions ψi ∈ SubstDC,⊥,F,
such that xiη ∈ Ziψi;

(8.2) (D, η) 6|=C x = t , if xη 6= tη and tη ∈ adom(x,D) ∪ {t};

Database Query Languages and Functional Logic Programming 31

(8.3) (D, η) 6|=C t ⇓ t ′, if tη 6↓ t′η, and tη, t′η ∈ adom(t,D) ∪ adom(t′,D);
(8.4) (D, η) 6|=C t ⇑ t ′, if tη 6↑ t′η, and tη, t′η ∈ adom(t,D) ∪ adom(t′,D);
(8.5) (D, η) 6|=C e / x , if xη /∈ [|e|]Dη, and xη ∈ adom(e,D) or η = id;
(8.6) (D, η) 6|=C φ1 ∧ φ2 , if (D, η) |=C φ1 or (D, η) |=C φ2;
(8.7) (D, η) 6|=C ∃x .φ, if for all v, then (D, η ◦ {x/v}) 6|=C φ;
(8.8) (D, η) 6|=C ¬φ, if (D, η) |=C φ.

With regard to the use of both denotation and active domain in the
Definition of calculus formula answers, for instance, in the previous formula ϕ0

and w.r.t. the formula ¬x5 ⇓ y, we have that adom(x5,D) = {peter, mary, F}
and adom(y,D) = {⊥} (remember that x5 is non-key variable, representing
the non-key attribute boss). Moreover, η1 = {x5/peter, y/mary} and η2 =
{x5/peter, y/F} satisfy yη1, yη2∈adom(x5,D) ∪ adom(y,D), and thus x5η1 6↓ yη1
and x5η2 6↓ yη2 are satisfied. Finally, no more values for the variable y can be
used for satisfying the constraint ¬x5 ⇓ y. Therefore, as in the functional logic
query language, we will consider the domain of the variables (in general, the
active domain of c-terms) in order to obtain the answers from a given calculus
formula.

With respect to the negation, we have to explicitly define the meaning
of the negated formulas, since, as previously mentioned, 6=, 6↓ and 6↑ are not the
“logical” negation of the corresponding relations =, ↓ and ↑. Similarly with the
atomic formulas of the form R(x1, . . . , xn).

Definition 4.9 (Set of Calculus Formula Answers)

Given a database instanceD = (S,DC, IF) of an extended database schemaD =
(S,DC, IF) and a calculus formula ϕ ≡ {x1, . . . , xn | φ}, then the set of answers
of ϕ w.r.t. D, denoted by Ans(D, ϕ), is defined as follows: Ans(D, {x1, . . . , xn

|φ}) = {(x1η, . . . , xnη) | η ∈ SubstDC,⊥,F and (D, η) |=C φ}.

§5 An Extended Relational Algebra
Next, we will present an extended relational algebra, equivalent to the

previously presented query formalisms (i.e. functional logic query language and
extended relational calculus). The proposed algebra is based on the use of a small
set of operators which encapsulate operations over relations, and they can be
composed in order to express queries. Our proposal will generalize the classical
selection and projection operators of the relational algebra, by using equality and
inequality constraints, data constructors and destructors, and, finally, interpreted
functions and their inverses. Let us start with some preliminary definitions.

32 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Definition 5.1 (Data Destructors and Function Inverses)

(1) Given a set of data constructors DC, we define the set of data destructors
DD induced from DC, as the set of symbols c.idx : T0 → Tidx, for each
c : T1 × . . .× Tn → T0 ∈ DC and 1 ≤ idx ≤ n, where c.idx(t) =def tidx if
t has the form c(t1, . . . , tn); and ⊥ otherwise;

(2) Given a set of interpreted functions IF , we define the set of function
inverses FI induced from IF , as the set of symbols f.idx : T0 → Tidx, for
each f : T1 × . . . × Tn → T0 ∈ IF and 1 ≤ idx ≤ n, where f.idx t =def

{ tidx | t ∈ fD t1 . . . tn}.

Now, given an extended database schema D = (S,DC, IF), the set
of algebra terms defined over D, denoted by TermDC∪DD,IF∪FI(Att(D)), are
terms built from the attributes defined in D, data constructors of DC, data
destructors of DD induced from DC, interpreted function symbols of IF , and,
finally, function inverses FI induced from IF .

Definition 5.2 (Denotation of Algebra Terms)

Given a database instanceD = (S,DC, IF) of an extended database schemaD =
(S,DC, IF), then the denotation of an algebra term e ∈ TermDC∪DD,IF∪FI(
Att(D)) in a tuple V = (V1, . . . , Vn) ∈ R, where R is a schema instance of S,
denoted by [|e|]DV , is defined as follows:

(1) [|Ai|]DV =def
∪

{η∈SubstDC,F}
Viη, for all Ai ∈ Key(D);

(2) [|Ai|]DV =def
∪

{η∈SubstDC,⊥,F}
Viη, for all Ai ∈ NonKey(D);

(3) [|c|]DV =def {c}, for all c ∈ DC0;
(4) [|c(e1 , . . . , en)|]DV =def c([|e1 |]DV , . . . , [|en |]DV), for all c ∈ DC n , n > 0;
(5) [|c.idx(e)|]DV =def c.idx([|e|]DV), for all c.idx ∈ DD induced from DC;
(6) [|f e1 . . . en |]DV =def f D [|e1 |]DV . . . [|en |]DV , for all f ∈ IFn ;
(7) [|f .idx e|]DV =def f .idx [|e|]DV , for all f .idx ∈ FI induced from IF .

For instance, with respect to the relation schema job information, we
can build the algebra term j&b(job name, bonus), representing the values of
the attributes job name and bonus encapsulated by the data constructor j&b.
In addition, by considering the view person boss job, we can build the algebra
term j&b.1(job bonus), which ’destructs’ the values of the attribute job bonus;
for example, w.r.t. the value j&b(professor, 1500) in the attribute job bonus,
we have that j&b.1(job bonus) denotes professor. As an example of lists,
let us consider the relation schema 2Dline. Then, [|].1(list of points) and

Database Query Languages and Functional Logic Programming 33

[|].2(list of points) represent the first point and the rest of points of the
attribute list of points, respectively.

Furthermore, given an extended database schema D = (S,DC, IF), we
also need to define the so-called projection terms as follows:

(a) terms of the form
=
p and

6=
p, where p is a term built from a key attribute

(i.e. attribute of Key(D)), data destructors of DD induced from DC,
and inverses of FI induced from IF ; or

(b) terms of the form
./
p ,

<>
p ,

6./
p and

</>
p , where p is an algebra term (i.e. a

term of the set TermDC∪DD,IF∪FI(Att(D))).

The projection terms
=
p,

./
p ,

<>
p represent the set of values (obtained from a

database instance), which are syntactically equal, strongly equal, and strongly

different to p, respectively. Analogously,
6=
p represents the set of values (obtained

from a database instance), which are not syntactically equal to p; finally,
6./
p and

</>
p represent the set of values (obtained from a database instance), which are
weakly different and weakly equal to p, respectively.

For instance,
./

job bonus w.r.t the instance of ”view” person boss job

requests the values which are strongly equal to the values of the attribute
job bonus; that is, totally defined values in this attribute, obtaining the value

{j&b(professor, 1500)}. Now, if we consider
6./

job bonus, then we are demand-
ing those values which are strongly different to the values of the attribute
job bonus; that is, {j&b(lecturer, F), j&b(associate, F)}. Finally, j&b.2

(
6./

job bonus) represents {F}.

Definition 5.3 (Denotation of Projection Terms)

Given a database instance D = (S,DC, IF) of an extended database schema

D = (S,DC, IF), then the denotation of a projection term
♦a
p in a tuple V =

(V1, . . . , Vn) ∈ R, where R is a schema instance of S and ♦a ∈ {=, ./,<>, 6=, 6./,

</>}, is represented by [|
♦a
p |]DV and defined as follows:

(1) [|
=
p |]DV =def [|p|]DV ;

(2) [|
./
p |]DV =def {t′| t′ ∈ [|p|]DV ′ , V ′ ∈ R and there exists t ∈ [|p|]DV and t ↓ t′};

(3) [|
<>
p |]DV =def {t′| t′ ∈ [|p|]DV ′ , V ′ ∈ R and there exists t ∈ [|p|]DV and t ↑ t′};

34 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

(4) [|
6=
p |]DV =def {t′| t′ ∈ [|p|]DV ′ , V ′ ∈ R and for all t ∈ [|p|]DV then t 6= t′};

(5) [|
6./
p |]DV =def {t′| t′ ∈ [|p|]DV ′ , V ′ ∈ R and for all t ∈ [|p|]DV then t 6↓ t′};

(6) [|
</>
p |]DV =def {t′| t′ ∈ [|p|]DV ′ , V ′ ∈ R and for all t ∈ [|p|]DV then t 6↑ t′};

(7) [|
♦a

c.idx(p) |]DV =def c.idx([|
♦a
p |]DV);

(8) [|
♦a

f.idx p |]DV =def f.idx [|
♦a
p |]DV .

Definition 5.4 (Algebra Formulas)

Given an extended database schema D = (S,DC, IF), then algebra formulas
are defined as expressions of the form:

(1) e = e′ and e 6= e′, where e is a term built from a key attribute (i.e.
attribute of Key(D)), data destructors of DD induced from DC, and
inverses of FI induced from IF , and e′ is an algebra term; or

(2) e ./ e′, e <> e′, e 6./ e′ and e </> e′, where e and e′ are algebra terms.

Definition 5.5 (Algebra Formula Answers)

Given a database instance D = (S,DC, IF) of an extended database schema
D = (S,DC, IF) and an algebra formula F , then a tuple V ∈ R (where R is a
schema instance of S) is an answer of F w.r.t. D (in symbols V |=A F) in the
following cases:

(1) V |=A e = e′, if there exist t ∈ [|e|]DV and t′ ∈ [|e′|]DV , such that t = t′;
(2) V |=A e ./ e

′, if there exist t ∈ [|e|]DV and t′ ∈ [|e′|]DV , such that t ↓ t′;
(3) V |=A e <> e′, if there exist t ∈ [|e|]DV and t′ ∈ [|e′|]DV , such that t ↑ t′;
(4) V |=A e 6= e′, if for all t ∈ [|e|]DV and t′ ∈ [|e′|]DV , then t 6= t′ holds
(5) V |=A e 6./ e′, if for all t ∈ [|e|]DV and t′ ∈ [|e′|]DV , then t 6↓ t′ holds;
(6) V |=A e </> e′, if for all t ∈ [|e|]DV and t′ ∈ [|e′|]DV , then t 6↑ t′ holds.

Definition 5.6 (Algebra Operators)

Given a database instance D = (S,DC, IF) of an extended database schema
D = (S,DC, IF), and let R,Q be two schema instances of S for the relations R
and Q of S, then the algebra operators are defined as follows:

Selection (σ):

R′ =σ F1,...,Fn(R) =def {V ∈ R | V |=A F1, . . . , Fn}
It denotes the tuple selection overR according to the algebra formulas F1, . . . , Fn;
where:

Database Query Languages and Functional Logic Programming 35

• Key(R′) = Key(R);
• NonKey(R′) = NonKey(R);

Projection (π):

R′ =π ♦k
p1 ,...,

♦k
pk ,

♦nk
pk+1,...,

♦nk
pn

(R)

where ♦k ∈ {=, 6=} and ♦nk ∈ {./,<>, 6./,</>}. Now, we need to consider two
cases; that is, a positive and a negative case:
(a) Positive Case:
R′ =π =

p1,...,
=
pk,

♦nk
pk+1,...,

♦nk
pn

(R) =def

{(W1, . . . ,Wk, [|
♦nk
pk+1 |]DV , . . . , [|

♦nk
pn |]DV) | Wi ∈ [| =

pi |]DV , V ∈ R}

(b) Negative Case:
R′ =π 6=

p1,...,
6=
pk,

♦nk
pk+1,...,

♦nk
pn

(R) =def

{W = (W1, . . . ,Wk, [|
♦nk
pk+1 |]DV , . . . , [|

♦nk
pn |]DV) | Wi ∈ [| =

pi |]DV , V ∈ R,W /∈ R}∪

{W = (W1, . . . ,Wk,
∪

V∈R
[| =
pk+1 |]DV , . . . ,

∪
V∈R

[| =
pn |]DV) | Wi ∈ [| 6=

pi |]DV , V ∈
R,W /∈ R}

It denotes the projection over R according to the projection terms
♦k
p1 , . . . ,

♦k
pk ,

♦nk
pk+1, . . . ,

♦nk
pn , where R′ is the instance of the relation schema R′ defined as

follows:
• Key(R′) = {♦k

p1 , . . . ,
♦k
pk};

• NonKey(R′) = { ♦nk
pk+1, . . . ,

♦nk
pn }.

Cross Product (×):

P = R×Q =def

{(V1, . . . , Vk,W1, . . . ,Wk′ , Vk+1, . . . , Vn,Wk′+1, . . . ,Wm) | V = (V1, . . . , Vn) ∈
R,W = (W1, . . . ,Wm) ∈ Q}
It denotes the cross product of the two schema instances R and Q; where P is
the instance of the relation schema P defined as follows:

• Key(P) = Key(R) ∪Key(Q);
• NonKey(P) = NonKey(R) ∪NonKey(Q);
• k = nKey(R), n = nAtt(R), k′ = nKey(Q) and m = nAtt(Q).

Join (./):

R./ F1,...,Fn
Q =defσ F1,...,Fn

(R×Q)
It denotes the join of the relation instances R and Q according to the algebra
formulas F1, . . . , Fn with the same conditions as selection operator.
Renaming (δρ):

36 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

R′ =δρ(R)
It denotes an attribute renaming of the relation R of the form A1A2 . . . Am →
B1B2 . . . Bm; where:

• ρ(Ai) = Bi, and ρ(C) = C if C 6≡ Ai;
• R′ contains the same tuples as R, and the schema of relation R′ is

R′(ρ(A1), . . . , ρ(An)), whenever relation R has as schema R(A1, . . . , An).

The most relevant operator is the projection one, since π takes: (a) k ≥ 0
projection terms, considered as the key values in the instance of the new output
relation; and (b) n − k projection terms (where n is the number of projection
terms in the operator), considered as the non-key values in the instance of the
new output relation. In addition, we need to consider two cases:
(Positive Case) - π projects tuples occurring in R; for instance, the query Qs ≡
retention for tax X ./ salary (job id peter) can be written as the following
algebra expression As:

As ≡ π ./

retention for tax.1(salary)
(σname=peter(

job information ./job name=job id person job))

In this case, As expresses the following meaning: to join the relations job informa-
tion and person job w.r.t. the attributes job name and job id (i.e. job informa-
tion ./job name=job id person job), and to project peter’s (i.e. σ name = peter) full

salary, that is π ./

retention for tax.1(salary)
.

(Negative Case) - π projects tuples which are not in R, but they are obtained
from combinations of key and non-key values occurring in R; for instance, the
query Q ≡ next X Y 6./ Z w.r.t. the relation schema 2Dline can be written by
the following algebra expression:

A ≡ π 6=
origin,

6=
dir,

6./
next

(2Dline)

In this case, A expresses the following meaning: to request those lines (i.e.

2Dline) which are not in the database (i.e. π 6=
origin,

6=
dir

), or points which are not the

next of any line origin occurring in the database (i.e. π 6./
next

).

Finally, as other example of algebra expression, we can consider the
query Q0 ≡ boss mary 6./ Y which can be written by the following algebra
expression A0:

Database Query Languages and Functional Logic Programming 37

Table 3 Examples of Algebra Expressions

Safe Query Algebra Expression

boss john ./ mary. σname=john, boss ./ mary(person job)

address (boss X) ./ Y,
job id X 6./ lecturer.

π=
name,

./

address′
(σname′=boss, job id 6./ lecturer(δ(ρ1)(person job× person job)))

job bonus X </>
j&b(associate, Y).

π
=

name,
</>

j&b.2(job bonus)

(σj&b.1(job bonus)</>associate(person boss job))

select(list of points
p(0, 0) Z) ./ p(0, 2).

π =
orientation

(σorigin=p(0,0), select(list of points) ./ p(0,2)(2Dline))

ρ1 : name age . . . name age . . .→ name age . . . name
′
age

′
. . .

A0 ≡ π 6./
boss

(σname=mary(person job))

representing, like query language (i.e. Q0) and relational calculus (i.e. ϕ0), the
tuples (F) and (mary). Remark that projection terms play the role of attribute
names in the output relation. For instance, the output relation of the algebra

expression A0 has a unique non-key attribute, whose attribute name is
6./

boss.
Next, we formally define the so-called algebra expressions.

Definition 5.7 (Algebra Expressions)

Given a database instance D = (S,DC, IF) of an extended database schema
D = (S,DC, IF), then algebra expressions Ψ are defined as expressions built
from a composition of algebra operators over a sub-sequence of schema instances
Ri, . . . ,Rj of S for the relation names Ri, . . . , Rj of S, satisfying the following
conditions:

(1) Ψ must be closed w.r.t. key values; that is, Key(Ψ) = ∪R∈Rel(Ψ)Key(R),
where Key(Ψ) and Rel(Ψ) represent the key attribute names and relation
names corresponding to schema instances occurring in Ψ, respectively;

(2) Ψ must be closed w.r.t. data destructors and function inverses; that is,
whenever π ♦a

c.index(e)
or σc.index(e)♦ae∗ (resp. π ♦a

f.index(e)
or σf.index(e)♦ae∗)

occurs in Ψ, then π ♦a

c.i(e)
or σc.i(e)♦ae∗ (resp. π ♦a

f.i(e)
or σf.i(e)♦ae∗) must

occur in Ψ, for every 1 ≤ i ≤ n with c ∈ DCn (resp. f ∈ IFn).

Table 3 shows the algebra expressions built from the safe queries pre-
sented in table 1.

§6 Query Formalism Equivalence
In this section, we will state the equivalence between all the query for-

malisms, that is the functional logic query language, the extended relational

38 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Table 4 Calculus and Query Transformation Rules

(1)
φ ∧ ∃z̄.ψ ⊕ e1 ./ e2,Q

φ ∧ ∃z̄.∃x.∃y.ψ ∧ e1 / x ∧ e2 / y ∧ x ⇓ y ⊕Q

(2)
φ ∧ ¬∃z̄.ψ ⊕ e1 6./ e2,Q

φ ∧ ¬∃z̄.∃x.∃y.ψ ∧ e1 / x ∧ e2 / y ∧ x ⇓ y ⊕Q

(3)
φ ∧ ∃z̄.ψ ⊕ e1 <> e2,Q

φ ∧ ∃z̄.∃x.∃y.ψ ∧ e1 / x ∧ e2 / y ∧ x ⇑ y ⊕Q

(4)
φ ∧ ¬∃z̄.ψ ⊕ e1 </> e2,Q

φ ∧ ¬∃z̄.∃x.∃y.ψ ∧ e1 / x ∧ e2 / y ∧ x ⇑ y ⊕Q

(5)
φ ∧ (¬)∃z̄.∃x.ψ ∧ R e1 . . . ek / x⊕Q

φ ∧ (¬)∃z̄.∃y1 . . . ∃yn.ψ ∧ R(y1, . . . , yk, . . . , yn) ∧ e1 / y1 ∧ . . . ∧ ek / yk{x/ok} ⊕ Q
? R ∈ S, where D = (S, DC, IF) is an extended database schema.

(6)
φ ∧ (¬)∃z̄.ψ ∧ Ai e1 . . . ek / x⊕Q

φ ∧ (¬)∃z̄.∃y1 . . . ∃yn.ψ ∧ R(y1, . . . , yk, . . . , yi, . . . , yn) ∧ e1 / y1 ∧ . . . ∧ ek / yk ∧ yi / x⊕Q
? Ai ∈ NonKey(R) and R ∈ S, where D = (S, DC, IF) is an extended database schema.

(7)
φ ∧ (¬)∃z̄.ψ ∧ f e1 . . . en / x⊕Q

φ ∧ (¬)∃z̄.∃y1 . . . yn.ψ ∧ f y1 . . . yn / x ∧ e1 / y1 ∧ . . . ∧ en / yn ⊕Q
? f e1 . . . en /∈ TermDC,IF(V), where D = (S, DC, IF) is an extended database schema.

(8)
φ ∧ (¬)∃z̄.ψ ∧ c(e1, . . . , en) / x⊕Q

φ ∧ (¬)∃z̄.∃y1 . . . yn.ψ ∧ c(y1, . . . , yn) / x ∧ e1 / y1 ∧ . . . ∧ en / yn ⊕Q
? c(e1 . . . en) /∈ TermDC,IF(V), where D = (S, DC, IF) is an extended database schema.

(9)
φ ∧ (¬)∃z̄.ψ ∧ t / x⊕Q
φ ∧ (¬)∃z̄.ψ ∧ x = t⊕Q
? x ∈ formula key(φ ∧ (¬)∃z̄.ψ ∧ t / x)

(10)
φ ∧ (¬)∃z̄.∃x.ψ ∧ t / x⊕Q
φ ∧ (¬)∃z̄.ψ{x/t} ⊕ Q

? x 6∈ formula key(φ ∧ (¬)∃z̄.∃x.ψ ∧ t / x)

calculus and the extended relational algebra.

6.1 Query and Calculus Equivalence
Firstly, we will show the equivalence between the functional logic query

language and the extended relational calculus. With this aim, we will define
a set of transformation rules, which allow us to transform a safe query into a
safe calculus formula and viceversa. In order to prove the equivalence result,
we will use two additional results (concretely, Lemma 10.1 (Answers in Calculus
and Query Transformation Rules) and Lemma 10.2 (Safety in Calculus and
Query Transformation Rules)) shown in Appendix subsection Query and Calculus

Equivalence, since there are quite a lot technical subtle in these results.

Definition 6.1 (Calculus and Query Transformation Rules)

Given a database instance D = (S,DC, IF) of an extended database schema
D = (S,DC, IF), we define a set of calculus and query transformation rules of
the form:

Database Query Languages and Functional Logic Programming 39

φ⊕ Q
φ∗ ⊕Q∗

The calculus and query transformation rules are shown in Table 4, and they
transform pairs (φ ⊕ Q) into pairs (φ∗ ⊕ Q∗), where φ and φ∗ are calculus
formulas, and Q and Q∗ are queries. Note that the rules can be applied in a
top-down and a bottom-up way. In fact, in order to transform a safe query Q into
a safe calculus formula φ, we start from∗3 (∅⊕Q) and apply the transformation
rules in a top-down way up to obtain the safe calculus formula φ. Analogously,
to transform a safe calculus formula φ into a safe query Q, we start from (φ⊕∅)
and apply the transformation rules in a bottom-up way up to obtain the safe
query Q.

Theorem 6.1 (Query and Calculus Equivalence)

Let D = (S,DC, IF) be a database instance of an extended database schema
D = (S,DC, IF), then:

(1) given a safe query Q? against D, there exists a safe calculus formula φQ?

such that Ans(D,Q?) = Ans(D, φQ?)
(2) given a safe calculus formula φ? against D, there exists a safe query Qφ?

such that Ans(D, φ?) = Ans(D,Qφ?)
Proof

In order to prove the theorem, we should prove the following:
(1) if (∅ ⊕ Q?) →n (φQ? ⊕ ∅) (i.e. starting from query Q? and applying the

calculus and query transformation rules n times, the calculus formula φQ?

is obtained), then:
(1.1) x̄η ∈ Ans(D,Q?), iff there exists a substitution η∗ such that x̄η∗ ∈

Ans(D, φQ?), where η∗ = η|var(Q?)

(1.2) Q? is safe, iff φQ? is safe
(2) if (φ? ⊕ ∅) →n (∅ ⊕ Qφ?) (i.e. starting from calculus formula φ? and

applying the calculus and query transformation rules n times, the query
Qφ? is obtained) then:

(2.1) x̄η ∈ Ans(D, φ?), iff there exists a substitution η∗ such that x̄η∗ ∈
Ans(D,Qφ?), where η∗ = η|free(φ)

(2.2) φ? is safe, iff Qφ? is safe
Let us start proving (1), that is (∅ ⊕ Q?) →n (φQ? ⊕ ∅):
For each transformation step, applying the rule,
∗3 ∅ denotes an empty sequence

40 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

φ ⊕ Q
φ∗ ⊕ Q∗

(1.1) η is a substitution such that x̄η ∈ Ans(D, φ) ∩ Ans(D,Q) with x̄ =
var(Q) ∪ free(φ) iff, by Lemma 10.1, there exists a substitution η∗ =
η|var(Q)∪free(φ), such that x̄η∗ ∈ Ans(D, φ∗) ∩ Ans(D,Q∗) with x̄ =
var(Q∗) ∪ free(φ∗). Therefore, starting from Q? and iterating transfor-
mation steps, then there exists a substitution η such that x̄η ∈ Ans(D,Q?)
with x̄ = var(Q?), iff, by Lemma 10.1, there exists a substitution η∗ such
that x̄η∗ ∈ Ans(D, φQ?) with x̄ = free(φQ?);

(1.2) the calculus formula φ and query Q are safe iff, by Lemma 10.2, the cal-
culus formula φ∗ and query Q∗ are safe. Now, if Q? is safe w.r.t. Lemma
10.2, then, in particular, Q? is safe w.r.t. Definition 3.3 (Safe Queries).
Therefore, by iterating transformation steps and by Lemma 10.2, φQ? is
safe w.r.t. Lemma 10.2 and, in particular, w.r.t. the Definition 4.5 (Safe
Calculus Formulas).

Analogously, we can prove (2), that is, (φ? ⊕ ∅) →n (∅ ⊕ Qφ?).

6.2 Calculus and Algebra Equivalence
In this subsection, we will show the equivalence among the proposed

extended relational calculus and algebra. As previously, we will define a set
of transformation rules, which allow us to transform a safe calculus formula
into a closed algebra expression and viceversa. In addition, in order to prove
the equivalence result, we will use two additional results (concretely, Lemma
10.3 (Answers in Calculus and Algebra Transformation Rules) and Lemma 10.4
(Safety in Calculus and Algebra Transformation Rules)) shown in Appendix
subsection Calculus and Algebra Equivalence.

Definition 6.2 (Calculus and Algebra Transformation Rules)

Given a database instance D = (S,DC, IF) where S is a sequence of schema
instances R1, . . . ,Rn. In addition, given an extended database schema D =
(S,DC, IF), where S is a sequence of relation names R1, . . . , Rn and each Ri is
a schema instance of Ri (1 ≤ i ≤ n), then we define a set of calculus and algebra
transformation rules of the form:

φ ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)

φ∗ ⊕ ∆∗ ⊕ (Rel∗|Select∗|Proj∗|Ren∗)

Database Query Languages and Functional Logic Programming 41

The calculus and algebra transformation rules are shown in Table 5, and they
transform triples (φ ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)) into triples (φ∗ ⊕ ∆∗ ⊕
(Rel∗|Select∗| Proj∗|Ren∗)), where:

• φ and φ∗ are calculus formulas;
• ∆ and ∆∗ represent substitutions of key and non-key variables by attri-

bute names, and variables by terms of TermDC∪DD,IF∪FI(Att(D));
• Rel and Rel∗ are sequences of schema instances of database instance D;
• Select and Select∗ are sequences of selection formulas;
• Proj and Proj∗ are sequences of projection terms;
• Ren and Ren∗ are sequences of renamings.

Finally, Ψ and Ψ∗ are algebra expressions, defined as follows:
• Ψ ≡ πProj(σSelect(δRen(Ri× . . .×Rj))), whenever Rel is the sequence

Ri, . . . ,Rj and each Rp is a schema instance of S with i ≤ p ≤ j;
• Ψ∗ ≡ πProj∗(σSelect∗(δRen∗(R∗

k× . . .×R∗
l))), whenever Rel∗ is the se-

quence R∗
k, . . . , R∗

l and each R∗
p is a schema instance of S with k ≤ p ≤ l.

As the previous transformation rules, these rules can be also applied in a top-
down and bottom-up way. In order to transform a safe calculus formula φ

into a closed algebra expression Ψ, we start from (φ ⊕ id ⊕ ∅) and apply the
transformation rules in a top-down way up to obtain the closed algebra ex-
pression Ψ. Analogously, in order to transform a closed algebra expression
πProj(σSelect(δRen(Ri× . . .×Rj))) into a safe calculus formula φ, we start from
(∅ ⊕ id ⊕ (Ri, . . . ,Rj |Select|Proj|Ren)) and apply the transformation rules in
a bottom-up way up to obtain the safe calculus formula φ.

Theorem 6.2 (Calculus and Algebra Equivalence)

Let D = (S,DC, IF) be a database instance, where S is a sequence of schema
instances R1, . . . ,Rn. In addition, given an extended database schema D =
(S,DC, IF), where S is a sequence of relation names R1, . . . , Rn such that Ri

is a schema instance of Ri (1 ≤ i ≤ n), then:
(1) given a safe calculus formula φ?, then there exists a closed algebra ex-

pression Ψφ?(Ri, . . . ,Rj) (Rp is a schema instance of S with i ≤ p ≤ j),
such that Ans(D, φ?) = Ψφ?(Ri, . . . ,Rj)

(2) given a closed algebra expression Ψ?(Ri, . . . ,Rj) (Rp is a schema instance
of S with i ≤ p ≤ j), then there exists a safe calculus formula φΨ? such
that Ψ?(Ri, . . . ,Rj) = Ans(D, φΨ?)

Proof

42 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Table 5 Calculus and Algebra Transformation Rules

(1)
φ ∧ (¬)∃z̄.∃y1 . . . ∃yn.ψ ∧ Ri(y1, . . . , yn) ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)

φ ∧ (¬)∃z̄.ψ ⊕ ∆ ◦ {yj/ρ(Aj)} ⊕ (Rel,Ri|Select|Proj|Ren, ρ)
? Ri ∈ S, Ri ∈ S is a schema instance of Ri and A1, . . . , An is the

sequence of attributes defined for Ri, where D = (S,DC, IF) is a

database instance of an extended database schema D = (S,DC, IF)

? n = nAtt(Ri)
? ρ : A1 . . . An → B1 . . . Bn

(2)
φ ∧ (¬)∃z̄.ψ ∧ yi = ti ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)

φ ∧ (¬)∃z̄.ψ ⊕ ∆∗ ⊕ (Rel|Select∗|Proj∗|Ren)

? φ and ψ contain neither formulas R(y1, . . . , yn), nor e / x
? Decomp((¬)yi∆ = ti∆|Select|Proj|∆) = (Select∗|Proj∗|∆∗)

(3)
φ ∧ (¬)∃z̄.∃x.ψ ∧ e / x ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)

φ ∧ (¬)∃z̄.ψ ⊕ ∆ ◦ {x/e} ⊕ (Rel|Select|Proj|Ren)

? φ and ψ contain no formulas R(y1, . . . , yn)

(4)
φ ∧ (¬)∃z̄.ψ ∧ t1 ⇓ t2 ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)

φ ∧ (¬)∃z̄.ψ ⊕ ∆∗ ⊕ (Rel|Select∗|Proj∗|Ren)

? φ and ψ contain neither formulas R(y1, . . . , yn), e / x, nor y = t
? t1∆ or t2∆ contains no free variables in φ ∧ (¬)∃z̄. ψ ∧ t1 ⇓ t2
? Decomp((¬)t1∆ ./ t2∆|Select|Proj|∆) = (Select∗|Proj∗|∆∗)

(5)
φ ∧ (¬)∃z̄.ψ ∧ t1 ⇑ t2 ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)

φ ∧ (¬)∃z̄.ψ ⊕ ∆∗ ⊕ (Rel|Select∗|Proj∗|Ren)

? φ and ψ contain neither formulas R(y1, . . . , yn), e / x, nor y = t
? t1∆ or t2∆ contains no free variables in φ ∧ (¬)∃z̄. ψ ∧ t1 ⇑ t2
? Decomp((¬)t1∆ <> t2∆|Select|Proj|∆) = (Select∗|Proj∗|∆∗)

In the above transformation rules, we consider the following cases:
Decomp((¬)e1 = e2|Select|Proj|∆) = Decomp(e1 6= e2|Select|Proj|∆)
Decomp((¬)e1 ./ e2|Select|Proj|∆) = Decomp(e1 6./ e2|Select|Proj|∆)

Decomp((¬)e1 <> e2|Select|Proj|∆) = Decomp(e1 </> e2|Select|Proj|∆)

Finally, Decomp(e1♦ae2|Select|Proj|∆) = (Select∗|Proj∗|∆∗),
with ♦a ∈ {=, ./,<>, 6=, 6./,</>}, is computed as follows:
? e♦a y and var(e) = ∅, then

Proj∗ = Proj,
♦a
e | Select∗ = Select | ∆∗ = ∆ ◦ {y/

♦a
e };

? e♦a A, var(e) = ∅ and A ∈ Key(δRen(Rel)) ∪NonKey(δRen(Rel)), then
Proj∗ = Proj | Select∗ = Select, e♦a A | ∆∗ = ∆;

? e♦a c(e1, . . . , en), var(e) = ∅, with c ∈ DC, then
if var(c(e1, . . . , en)) = ∅, then
Proj∗ = Proj | Select∗ = Select, e♦a c(e1, . . . , en) | ∆∗ = ∆;

else
Proj∗ = Proj, Proj1, . . . , P rojn | Select∗ = Select, Select1, . . . , Selectn |
∆∗ = ∆n;

where Decomp(c.i(e)♦a ei|Select|Proj|∆i) = (Selecti|Proji|∆i+1), ∆0 = ∆;

? e♦a f e1 . . . en, var(e) = ∅, with f ∈ IF , then
if var(f e1 . . . en) = ∅, then
Proj∗ = Proj | Select∗ = Select, e♦a f e1 . . . en | ∆∗ = ∆;

else
Proj∗ = Proj, Proj1, . . . , P rojn | Select∗ = Select, Select1, . . . , Selectn
∆∗ = ∆n;

where Decomp(f.i e♦a ei|Select|Proj|∆i) = (Selecti|Proji|∆i+1), ∆0 = ∆.

Database Query Languages and Functional Logic Programming 43

In order to prove the theorem, we should prove the following:

(1) if (φ? ⊕ id ⊕ ∅) →n (∅ ⊕ ∆ ⊕ (Relφ? |Selectφ? |Projφ? |Renφ?)), where
Relφ? = Ri, . . . ,Rj (i.e. starting from calculus formula φ? and apply-
ing the calculus and algebra transformation rules n times, the algebra
expression Ψφ? ≡ πProjφ? (σSelectφ? (δRenφ? (Relφ?))) is obtained), then:

(1.1) there exists a tuple V such that V = x̄η ∈ Ans(D, φ?), iff there exists
a permutation V ∗ of tuple V such that V ∗ ∈ Ψφ?(Ri, . . . ,Rj)

(1.2) φ? is a safe calculus formula, iff Ψφ?(Ri, . . . ,Rj) is a closed algebra
expression

(2) if (∅ ⊕ id⊕ (Rel?|Select?|Proj?|Ren?)) →n (φΨ? ⊕∆⊕∅), where Rel? =
Ri, . . . ,Rj (i.e. starting from the algebra expression Ψ? ≡ πProj?(σSelect?

(δRen?(Rel?))) and applying the calculus and algebra transformation rules
n times, the calculus formula φΨ? is obtained), then:

(2.1) there exists a tuple V such that V ∈ Ψ?(Ri, . . . ,Rj), iff there exists a
permutation V ∗ of tuple V such that V ∗ = x̄η ∈ Ans(D, φΨ?)

(2.2) Ψ?(Ri, . . . ,Rj) is a closed algebra expression, iff φΨ? is a safe calculus
formula

Let us start proving (1), that is (φ? ⊕ id⊕∅) →n (∅⊕∆⊕(Relφ? |Selectφ? |Projφ? |
Renφ?)):
For each transformation step, applying the rule,

φ ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)

φ∗ ⊕ ∆∗ ⊕ (Rel∗|Select∗|Proj∗|Ren∗)

(1.1) η is a substitution and W1×W2 is a permutation of a tuple (V1, . . . , Vn),
such that W1 = ȳη with x̄η ∈ Ans(D, φ) and ȳ = x̄ \ dom(∆), and
W2 = πProj(W3) with W3 ∈ σSelect(δRen(Rel)), iff by Lemma 10.3, there
exists a substitution η∗ and a tuple W ∗

1×W ∗
2 (i.e. a permutation of the

tuple (V1, . . . , Vn)), such that W ∗
1 = z̄η∗ with ūη∗ ∈ Ans(D, φ∗) and z̄ =

ū \ dom(∆∗), and W ∗
2 = πProj∗(W ∗

3) with W ∗
3 ∈ σSelect∗ (δRen∗(Rel∗)).

Therefore, starting from φ?, a substitution η and ∆ = id, then, by it-
erating transformation steps, there exists a tuple V = x̄η ∈ Ans(D, φ?)
iff, by Lemma 10.3, we can find a permutation V ∗ of tuple V such that
V ∗ ∈ Ψφ?(Ri, . . . ,Rj) ≡ πProjφ? (σSelectφ? (δRenφ? (Relφ?)));

(1.2) φ is a safe calculus formula and πProj(σSelect(δRen(Rel))) is a closed al-
gebra expression, iff, by Lemma 10.4, φ∗ is a safe calculus formula and
πProj∗(σSelect∗(δRen∗(Rel∗))) is a closed algebra expression. Now, if φ? is
safe w.r.t. Lemma 10.4, then, in particular, φ? is safe w.r.t. Definition 4.5

44 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

(Safe Calculus Formulas). Therefore, by iterating transformation steps
and by Lemma 10.4, Ψφ?(Ri, . . . ,Rj) ≡ πProjφ? (σSelectφ? (δRenφ? (Relφ?)))
is a closed algebra expression w.r.t. Lemma 10.4, and, in particular, w.r.t.
Definition 5.7 (Algebra Expressions).

Analogously, we can prove (2), that is, (∅ ⊕ id⊕(Rel?|Select?|Proj?|Ren?)) →n

(φΨ? ⊕∆⊕ ∅).

6.3 Query and Algebra Equivalence
Finally, in this subsection, we will show the result of equivalence between

the proposed functional logic query language and the extended relational algebra.
In order to present this result, we will use the previous equivalence results.

Corollary 6.1 (Query and Algebra Equivalence)

Let D = (S,DC, IF) be a database instance, where S is a sequence of schema
instances R1, . . . ,Rn. In addition, given an extended database schema D =
(S,DC, IF), where S is a sequence of relation names R1, . . . , Rn such that Ri

is a schema instance of Ri (1 ≤ i ≤ n), then:
(1) given a safe query Q? against D, then there exists a closed algebra expre-

ssion ΨQ?(Ri, . . . ,Rj) (Rp is schema instance of S with i ≤ p ≤ j), such
that Ans(D,Q?) = ΨQ?(Ri, . . . ,Rj)

(2) given a closed algebra expression Ψ?(Ri, . . . ,Rj) (Rp is a schema instance
of S with i ≤ p ≤ j), then there exists a safe query QΨ? against D, such
that Ψ?(Ri, . . . ,Rj) = Ans(D,QΨ?)

Proof

(1) Trivial; from the safe query Q?, by Theorem 6.1, we can obtain a safe
calculus formula φQ? such that Ans(D,Q?) = Ans(D, φQ?); now, from
φQ? and by Theorem 6.2, we can obtain the corresponding closed algebra
expression ΨQ?(Ri, . . . ,Rj) such that Ans(D, φQ?) = ΨQ?(Ri, . . . ,Rj);
therefore, we can obtain ΨQ?(Ri, . . . ,Rj) such that Ans(D,Q?) = ΨQ?

(Ri, . . . ,Rj);
(2) Trivial; from a closed algebra expression Ψ?(Ri, . . . ,Rj), by Theorem 6.2,

we can obtain a safe calculus formula φΨ? such that Ψ?(Ri, . . . ,Rj) =
Ans(D, φΨ?); finally, from φΨ? and by Theorem 6.1, we can obtain the
corresponding safe query QΨ? such that Ans(D, φΨ?) = Ans(D,QΨ?);
therefore, we can obtain QΨ? such that Ψ?(Ri, . . . ,Rj) = Ans(D,QΨ?).

Database Query Languages and Functional Logic Programming 45

§7 A Comparison with the Related Work
Data models and query languages have been studied for functional de-

ductive languages, such as FDL 28), PFL 37), among others, for logic deductive
languages, like CORAL 31), ADITI 39) and LDL 10), among others, and for con-
straint databases such as DEDALE 34). In our case, we consider a data model
and a query language, which combine and enrich some aspects of the mentioned
models and languages in a uniform way.

Functional models 26, 27) are usually based on the data model proposed
by Shipman 35). Taking as an example 26), we have that this data model nicely
manages the following notions:

(1) Schema definitions which consist of relation definitions; then, these rela-
tions define a sequence of key names, as well as attribute definitions by
means of type definitions, allowing relation names as types;

(2) Instances are defined from the key names included in the relation defini-
tions, and rules in the form of rewriting rules defining attribute values.
Attributes can be multi-valued, in the sense that they can represent a
set of values in the form of a record. In addition, the model can handle
default values 29) for attributes, and partial information in the form of
null values 19, 26, 27).

(3) The query language is based on list comprehension syntax 38). List com-
prehension is a high-level formalism similar to the relational calculus
which allows encapsulated search. Queries can handle lazy functions in
order to manage the collected values by means of the list comprehension
syntax.
In Deductive databases with complex values, attributes can be multi-

valued built from set and tuple constructors 15, 10). Instances are defined by
means of Prolog-style facts and (recursive) rules. However, like Prolog, relations
are defined over finite values, the relations are finite, and the querying mechanism
deals with these finite relations. In addition, the query language is based on
the solving of Prolog-style queries, although alternative query languages, like
extensions from relational calculus and algebra, have been studied 1, 2).

In Constraint databases 17, 18), the relational model is generalized by
considering tuples as quantifier-free conjunctions of constraints over variables.
Instances include tuples defined by means of Prolog-style rules enriched with
constraints. Constraint databases allow the handling of infinite relations, al-
though finitely (symbolically) representable by using, for example, linear con-

46 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

straints 32). Moreover, the database querying mechanisms deal efficiently with
this finite representation. The query language is based on the solving of Prolog-
style queries enriched with constraints. Finally, in this paradigm, alternative
query languages, based on extensions of relational calculus and algebra, have
been also studied 17, 33).

Now, w.r.t. the query formalisms based on extensions of relational lan-
guages, as previously mentioned, extended relational calculi have been stud-
ied as alternative query formalisms for deductive databases 1, 20) and constraint
databases 8, 16, 17, 18, 33). Our extended relational calculus is in the line of 1), in
which deductive databases can handle complex values built from the set and
tuple constructors. In our case, we generalize the mentioned calculus, allowing
to deal with complex values built from (arbitrary) recursively defined datatypes.

In addition, our calculus also follows the proposed line by the calculi
developed for constraint databases 17, 33), in the sense of allowing the handling of
infinite database instances. However, in the framework of constraint databases,
infinite database instances model infinite objects, represented by (linear) equa-
tions and inequations, and intervals handled in a symbolic way. In our frame-
work, infinite database instances are handled by means of laziness and partial
approximations. Moreover, our calculus handles constraints defined from equal-
ity and inequality constraints over complex values.

Like extended relational calculi, extended relational algebras have been
also studied as alternative query formalisms for deductive databases 1) and con-
straint databases16, 7). Our extended relational algebra is in the line of 1), al-
though, in our case, we generalize the mentioned algebra, allowing to handle
complex values built from arbitrary recursively defined datatypes. In addition,
our algebra is also in the line of algebra proposed for constraint databases 16), in
the sense of dealing with equality and inequality constraints, but, here, used for
comparing sets of complex values.

§8 Conclusions and Future Work
In this paper, we have studied how to express queries in a framework

integrating the context of databases and functional logic programming. We have
proposed three alternative query formalisms; that is, a functional logic query
language, an extended relational calculus, and an extended relational algebra,
showing that all of them are alternative equivalent ways of expressing queries
in our framework. As future work, we will propose two main lines of research:

Database Query Languages and Functional Logic Programming 47

(a) the study of our extended relational formalisms as data definition languages,
as well as the development of operational mechanisms for such languages; and
(b) the implementation of both query formalisms in the current prototype of
INDALOG.

§9 Acknowledgements
We would like to thank anonymous referees for their useful comments.

This work has been partially supported by the Spanish project of the Ministry
of Science and Technology “INDALOG” TIC2002-03968 under FEDER funds.

References
1) S. Abiteboul and C. Beeri. The Power of Languages for the Manipulation of

Complex Values. The VLDB Journal, 4(4):727–794, 1995.

2) S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

3) J. M. Almendros-Jiménez and A. Becerra-Terón. A Framework for Goal-
Directed Bottom-Up Evaluation of Functional Logic Programs. In Proc. of In-
ternational Symposium on Functional and Logic Programming, FLOPS, LNCS
2024, pages 153–169. Springer, 2001.

4) J. M. Almendros-Jiménez and A. Becerra-Terón. A Relational Algebra for
Functional Logic Deductive Databases. In Procs. of Perspectives of System
Informatics, PSI, LNCS 2890, pages 494–508. Springer, 2003.

5) J. M. Almendros-Jiménez and A. Becerra-Terón. A Safe Relational Calculus
for Functional Logic Deductive Databases, Selected Papers of the International
Workshop on Functional and (Constraint) Logic Programming, WFLP. Elec-
tronic Notes on Theoretical Computer Science, ENTCS, 86(3), 2003.

6) J. M. Almendros-Jiménez, A. Becerra-Terón, and J. Sánchez-Hernández. A
Computational Model for Funtional Logic Deductive Databases. In Proc. of
International Conference on Logic Programming, ICLP, LNCS 2237, pages 331–
347. Springer, 2001.

7) A. Belussi, E. Bertino, and B. Catania. An Extended Algebra for Constraint
Databases. IEEE Transactions on Knowledge and Data Engineering, TKDE,
10(5):686–705, 1998.

8) M. Benedikt and L. Libkin. Constraint Databases, chapter Query Safety with
Constraints, pages 109–129. Springer, 2000.

9) P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles of Programming
with Complex Objects and Collection Types. Theoretical Computer Science,
TCS, 149(1):3–48, 1995.

10) D. Chimenti, R. Gamboa, R. Krishnamurthy, S. A. Naqvi, S. Tsur, and C. Zan-
iolo. The LDL System Prototype. IEEE Transactions on Knowledge and Data
Engineering, TKDE, 2(1):76–90, 1990.

11) E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM, CACM, 13(6):377–387, 1970.

48 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

12) J. C. González-Moreno, M. T. Hortalá-González, F. J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An Approach to Declarative Programming Based on a
Rewriting Logic. Journal of Logic Programming, JLP, 1(40):47–87, 1999.

13) M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, JLP, 19,20:583–628, 1994.

14) M. Hanus. Curry: An Integrated Functional Logic Language, Version 0.8.
Technical report, University of Kiel, Germany, 2003.

15) R. Hull and J. Su. Deductive Query Language for Recursively Typed Complex
Objects. Journal of Logic Programming, JLP, 35(3):231–261, 1998.

16) P. Kanellakis and D. Goldin. Constraint Query Algebras. Constraints, 1(1–
2):45–83, 1996.

17) P. Kanellakis, G. Kuper, and P. Revesz. Constraint Query Languages. Journal
of Computer and System Sciences, JCSS, 51(1):26–52, 1995.

18) G. M. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases.
Springer, 2000.

19) L. Libkin. A Semantics-based Approach to Design of Query Languages for
Partial Information. In Proc. of Semantics in Databases, LNCS 1358, pages
170–208. Springer, 1995.

20) M. Liu. Deductive Database Languages: Problems and Solutions. ACM Com-
puting Surveys, 31(1):27–62, 1999.

21) F. J. López-Fraguas and J. Sánchez-Hernández. T OY: A Multiparadigm
Declarative System. In Procs. of Conference on Rewriting Techniques and Ap-
plications, RTA, LNCS 1631, pages 244–247. Springer, 1999.

22) F. J. López-Fraguas and J. Sánchez-Hernández. Proving Failure in Functional
Logic Programs. In Proc. of the International Conference on Computational
Logic, CL, LNCS 1861, pages 179–193. Springer, 2000.

23) F. J. López-Fraguas and J. Sánchez-Hernández. A Proof Theoretic Approach
to Failure in Functional Logic Programming. Theory and Practice of Logic
Programming, TPLP, 4(1-2):41–74, 2004.

24) R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

25) J. J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with
Functions and Predicates: The Language BABEL. Journal of Logic Program-
ming, JLP, 12(3):191–223, 1992.

26) N. Paton, R. Cooper, H. Williams, and P. Trinder. Database Programming
Languages. C.A.R. Hoare Series. Prentice Hall, 1996.

27) A. Poulovassilis. FDL: An Integration of the Functional Data Model and the
Functional Computation Model. In Proc. of the British National Conference
on Databases, BNCOD, pages 215–236. Cambridge University Press, 1988.

28) A. Poulovassilis. The Implementation of FDL, a Functional Database Language.
The Computer Journal, 35(2):119–128, 1992.

29) A. Poulovassilis and P. King. Extending the Functional Data Model to Com-
putational Completeness. In Proc. of International Conference on Extending
Database Technology, EDBT, LNCS 416, pages 75–91. Springer, 1990.

30) A. Poulovassilis and C. Small. A Functional Programming Approach to Deduc-
tive Databases. In Proc. of Very Large Data Bases Conference, VLDB, pages
491–500. Morgan Kaufmann, 1991.

Database Query Languages and Functional Logic Programming 49

31) R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. Implementa-
tion of the CORAL Deductive Database System. In Proc. of the ACM SIGMOD
International Conference on Management of Data, pages 167–176. ACM Press,
1993.

32) P. Z. Revesz. Safe Datalog Queries with Linear Constraints. In Proc. of In-
ternational Conferente on Principles and Practice of Constraint Programming,
CP, LNCS 1520, pages 355–369. Springer, 1998.

33) P. Z. Revesz. Safe Query Languages for Constraint Databases. ACM Transac-
tions on Database Systems, TODS, 23(1):58–99, 1998.

34) P. Rigaux, M. Scholl, L. Segoufin, and S. Grumbach. Building a Constraint-
based Spatial Database System: Model, Languages, and Implementation. In-
formation Systems, 28(6):563–595, 2003.

35) D. W. Shipman. The Functional Data Model and the Data Language DAPLEX.
ACM Transactions on Database Systems, TODS, 6(1):140–173, 1981.

36) O. Shmueli, S. Tsur, and C. Zaniolo. Compilation of Set Terms in the Logic
Data Language (LDL). Journal of Logic Programming, JLP, 12(1–2):89–119,
1992.

37) C. Small and A. Poulovassilis. An Overview of PFL. In Proc. of International
Workshop on Database Programming Languages, DBPL, pages 96–110. Morgan
Kaufmann, 1991.

38) P. W. Trinder. Comprehensions, A Query Notation for DBPL. In Proc. of
International Workshop on Database Programming Languages, DBPL, pages
55–68. Morgan Kaufman, 1991.

39) J. Vaghani, K. Ramamohanarao, D. B. Kemp, Z. Somogyi, P. J. Stuckey, T. S.
Leask, and J. Harland. The Aditi Deductive Database System. The VLDB
Journal, 3(2):245–288, 1994.

50 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

§10 Appendix. Proofs of the Lemmas

Query and Calculus Equivalence

In this subsection, we will show two additional results in two Lemmas
which will prove the equivalence of the calculus and query transformation rules,
and are used in the proof of Theorem 6.1. From a non-formal point of view, the
first result states the following: once applied a given transformation rule, then

• the set of answers obtained from φ and Q is the same as one obtained
from φ∗ and Q∗.

Now, we formally state this result in the following Lemma.

Lemma 10.1 (Answers in Calculus and Query Transformation Rules)

Given a calculus and query transformation rule,

φ⊕ Q
φ∗ ⊕Q∗

and let D = (S,DC, IF) be a database instance of an extended database schema
D = (S,DC, IF), then:

there exists a substitution η such that x̄η ∈ Ans(D, φ) ∩ Ans(D,Q), with x̄ =
free(φ) ∪ var(Q),
iff
there exists a substitution η∗ such that x̄η∗ ∈ Ans(D, φ∗) ∩ Ans(D,Q∗), with
x̄ = free(φ∗) ∪ var(Q∗) and η = η∗|free(φ)∪var(Q),

where:
• x̄η denotes a tuple (x1η, . . . , xnη) and, in addition, x̄η ∈ Ans(D, φ) ∩

Ans(D,Q) (x̄ = free(φ)∪ var(Q)) whenever (D, η) |=C φ and (D, η) |=Q

Q;
• η∗|free(φ)∪var(Q) denotes the substitution restricted to the variables of Q

and the free variables of φ.
Proof

Let us see the proof for the main calculus and query transformation rules.

(1)
φ ∧ ∃z̄. ψ ⊕ e1 ./ e2, Q

φ ∧ ∃z̄.∃x.∃y. ψ ∧ e1 / x ∧ e2 / y ∧ x ⇓ y ⊕ Q

(D, η) |=Q e1 ./ e2 iff there exist t1 ∈ [|e1|]Dη and t2 ∈ [|e2|]Dη, such that t1 ↓ t2
and t1, t2 ∈ adom(e1,D) ∪ adom(e2,D). Now, let η∗ be a substitution such
that η∗ = η ◦ {x/t1, y/t2}, then xη∗ ∈ [|e1|]Dη∗ and yη∗ ∈ [|e2|]Dη∗; thus iff

Database Query Languages and Functional Logic Programming 51

(D, η∗) |=C e1 / x ∧ e2 / y. In addition, by Definition 4.7 (Active Domain
of Calculus Terms), adom(x,D) = adom(e1,D) and adom(y,D) = adom(e2,D),
and since xη∗ ↓ yη∗, and xη∗, yη∗ ∈ adom(x,D) ∪ adom(y,D), and thus iff
(D, η∗) |=C x ⇓ y. Therefore, (D, η∗) |=C (e1 / x ∧ e2 / y ∧ x ⇓ y) and, finally,
(D, η) |=C φ, (D, η) |=C (∃z̄.∃x.∃y. ψ ∧ e1 /x ∧ e2 /y ∧ x ⇓ y) and (D, η) |=Q Q.

(2)
φ ∧ ¬∃z̄.ψ ⊕ e1 6./ e2,Q

φ ∧ ¬∃z̄.∃x.∃y.ψ ∧ e1 / x ∧ e2 / y ∧ x ⇓ y ⊕Q

(D, η) |=Q e1 6./ e2 iff for all t1 ∈ [|e1|]Dη and t2 ∈ [|e2|]Dη, then t1 6↓ t2 and
t1, t2 ∈ adom(e1,D) ∪ adom(e2,D). Now, let η∗ be substitutions such that
η∗ = η◦{x/t1, y/t2}, then xη∗ ∈ [|e1|]Dη∗ and yη∗ ∈ [|e2|]Dη∗; thus iff (D, η∗) |=C

e1 / x ∧ e2 / y. In addition, by Definition 4.7 (Active Domain of Calculus
Terms), adom(x,D) = adom(e1,D) and adom(y,D) = adom(e2,D), and since
η∗ = η ◦ {x/t1, y/t2}, t1 6↓ t2 and t1, t2 ∈ adom(e1,D) ∪ adom(e2,D), then, in
particular, xη∗ 6↓ yη∗ and xη∗, yη∗ ∈ adom(x,D)∪ adom(y,D); then (D, η∗) |=C

¬x ⇓ y; now, if η∗ is such that xη∗ ↓ yη∗ then xη∗ /∈ [|e1|]Dη∗ or yη∗ /∈ [|e2|]Dη∗, by
hypothesis; thus (D, η) |=C φ, (D, η) |=C ¬(∃z̄.∃x.∃y. ψ ∧ e1 /x ∧ e2 /y ∧ x ⇓ y)
and (D, η) |=Q Q.

(3) and (4) are similar.

(5) and (6) are analogous, let us see (6):

(6)
φ ∧ (¬)∃z̄.ψ ∧ Ai e1 . . . ek / x⊕Q

φ ∧ (¬)∃z̄.∃y1 . . . ∃yn.ψ ∧ R(y1, . . . , yk, . . . , yi, . . . , yn) ∧ e1 / y1 ∧ . . . ∧ ek / yk ∧ yi / x⊕Q
? Ai ∈ NonKey(R) and R ∈ S, where D = (S, DC, IF) is an extended database schema.

In the positive case, (D, η) |=C ∃z̄. ψ ∧ Ai e1 . . . ek / x iff there exists a
substitution η′ such that (D, η′) |=C Ai e1 . . . ek / x. Therefore, iff xη′ ∈
[|Ai e1 . . . ek|]Dη′; that is, vi = xη′ ∈ ViηV for a given substitution ηV , whenever
([|e1|]Dη′, . . . , [|ek|]Dη′) = (V1ηV , . . . , VkηV) and there exists a tuple (V1, . . . , Vk, . . . ,

Vi, . . . , Vn) ∈ R, where R ∈ S is an instance of the relation R ∈ S and
D = (S,DC, IF) is a database instance of an extended database schema D =
(S,DC, IF). Now, let η∗ be a substitution, such that η∗ = η′◦{y1/v1, . . . , yn/vn}
and v1 ∈ V1ηV , . . . , vn ∈ VnηV . Therefore, (D, η∗) |=C R(y1, . . . , yn) and since
y1η

∗ ∈ [|e1|]Dη∗ . . . ykη∗ ∈ [|ek|]Dη∗, then (D, η∗) |=C ei / yi. Now, given that
yiη

∗ = xη, then (D, η∗) |=C yi / x and we can prove (D, η∗) |=C R(y1, . . . , yk, . . . ,
yi, . . . , yn) ∧ e1 / y1 ∧ . . . ∧ ek / yk ∧ yi / x. Finally, (D, η) |=C φ, (D, η) |=C

52 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

∃z̄.∃y1 . . .∃yn. ψ ∧ R(y1, . . . , yk, . . . , yi, . . . , yn)∧ e1 / y1 ∧ . . . ∧ ek / yk ∧ yi / x

and (D, η) |=Q Q.
In the negative case, if xη∗ /∈ [|Ai e1 . . . ek|]Dη∗ for every η∗ = η ◦ {x/v}, since
xη∗ ∈ adom(A e1, . . . , ek,D) then xη∗ ∈ ∪(V1,...,Vi,...,Vn)∈R,λ∈SubstDC,⊥,F

Viλ; Let

be susbtitutions η∗∗ = η ◦ {x/v} ◦ {yj/vj}, where vj ∈ [|ej |]Dη∗ = Vjλ
∗; then

if (D, η∗∗) |=C R(y1, . . . , yi, . . . , yn) and (D, η∗∗) |=C e1 / y1, . . . , ek / yk then
(D, η∗∗) 6|=C yi / x since xη∗ /∈ Viλ

∗ and xη∗ ∈ adom(A e1, . . . , ek); analo-
gously, if (D, η∗∗) |=C e1 / y1, . . . , ek / yk and (D, η∗∗) |=C yi / x for a given η∗∗,
then (D, η∗∗) 6|=C R(y1, . . . , yi, . . . , yn) since xη∗ /∈ [|Ai e1 . . . ek|]Dη∗; finally,
if (D, η∗∗) |=C R(y1, . . . , yi, . . . , yn), yi / x for a given η∗∗, then (D, η∗∗) 6|=C

e1 / y1, . . . , ek / yk by the same reason.

The cases (7) and (8) are similar. Let us see (7) in the positive case, the
negative case can be analougously proved.

(7)
φ ∧ (¬)∃z̄.ψ ∧ f e1 . . . en / x⊕Q

φ ∧ (¬)∃z̄.∃y1 . . . yn.ψ ∧ f y1 . . . yn / x ∧ e1 / y1 ∧ . . . ∧ en / yn ⊕Q
? f e1 . . . en /∈ TermDC,IF(V), where D = (S, DC, IF) is an extended database schema.

(D, η) |=C ∃z̄.ψ ∧ f e1 . . . en / x iff there exists a substitution η′ such that
(D, η′) |=C f e1 . . . en /x. Therefore, xη′ ∈ [|f e1 . . . en|]Dη′, iff xη′ ∈ fD [|e1|]Dη′

. . . [|en|]Dη′. Now, there exist c-terms t1, . . . , tn such that t1 ∈ [|e1|]Dη′ . . . tn ∈
[|en|]Dη′, and thus, iff xη′ ∈ fD t1 . . . tn. Now, let η∗ be a substitution such
that η∗ = η ◦ {y1/t1, . . . , yn/tn}. Then y1η

∗ ∈ [|e1|]Dη∗ . . . ynη∗ ∈ [|en|]Dη∗,
and xη∗ ∈ fD [|y1|]Dη∗ . . . [|en|]Dη∗; thus, xη∗ ∈ [|f y1 . . . yn|]Dη∗ iff (D, η) |=C φ,
(D, η) |=C ∃z̄.∃y1 . . .∃yn.ψ∧f y1 . . . yn/x∧e1/y1∧. . .∧en/yn and (D, η) |=Q Q.

The cases (9) and (10) are similar. Let us see the positive of (9), the negative
case is analogous.

(9)
φ ∧ (¬)∃z̄.ψ ∧ t / x⊕Q
φ ∧ (¬)∃z̄.ψ ∧ x = t⊕Q
? x ∈ formula key(φ ∧ (¬)∃z̄.ψ ∧ t / x)

(D, η) |=C ∃z̄. ψ ∧ t / x iff there exists a substitution η′, such that (D, η′) |=C

t / x. Therefore, xη′ ∈ [|t |]Dη′ = {tη′}, and then xη′ = tη′. In adition
adom(x,D) = adom(t,D) and therefore, iff (D, η) |=C ∃z̄. ψ ∧ x = t, and we
have that (D, η) |=C φ, (D, η) |=C ∃z̄. ψ ∧ x = t and (D, η) |=Q Q.

Now, the additional second result states the following: once applied a given
transformation rule, then

Database Query Languages and Functional Logic Programming 53

• φ and Q are safe iff φ∗ and Q∗ are safe;
where the Definitions 3.3 (Safe Queries) and 4.5 (Safe Calculus Formulas) state
the safety conditions for the queries and calculus formulas, respectively. Howe-
ver, the Definitions of the required conditions by the above Definitions (i.e.
range restricted in queries, range restricted in calculus formulas, and safe atomic
formulas) are now modified as follows:

(a) both Range Restricted C-Terms of Queries (Definition 3.2) and Range
Restricted C-Terms of Calculus Formulas (Definition 4.4) are replaced as
follows: a c-term t occurring in a query Q or calculus formula φ is range
restricted, if either:

(1) t belongs to ∪
s∈query key(Q) cterms(s), or

(2) there exists a constraint e ♦q e′ (♦q ∈ {./,<>, 6./,</>}), such that t
belongs to cterms(e) (resp. cterms(e′)) and every c-term occurring in
e′ (resp. e) is range restricted in Q or φ, or

(4) t occurs in formula key(φ) ∪ formula nonkey(φ), or
(5) there exists one equation e♦c e′ (♦c ∈ {=,⇑,⇓, /}) in φ, such that t

belongs to cterms(e) (resp. cterms(e′)) and every c-term of e′ (resp.
e) is range restricted in Q or φ.

(b) Safe Atomic formulas (Definition 4.3) is replaced by:
(1) R(x1, . . . , xk, xk+1, . . . , xn) is safe, if the variables x1, . . . , xn are bo-

unded in φ, and for each xi (i ≤ nKey(R)) there exists one equation
ei / xi or xi = ti occurring in φ;

(2) x = t is safe, if the variables occurring in t are distinct from the varia-
bles of formula key(φ) and ∪

s∈query key(Q) cterms(s), and x is a vari-

able of formula key(φ) or ∪
s∈query key(Q) cterms(s);

(3) t1 ⇓ t2, t1 ⇑ t2, and e1♦q e2 are safe if the variables occurring in t1,
t2, e1 and e2 are distinct from the variables of formula key(φ) and

∪
s∈query key(Q) cterms(s);

(4) e / x is safe, if the variables occurring in e are distinct from the variables
of formula key(φ) and ∪

s∈query key(Q) cterms(s), and x is bounded in
φ.

Note that this safety definition is more general than the original one. In fact, if
Q = ∅ or φ = ∅, then the above conditions coincide with the original ones (i.e.
Definition 3.2 for queries, and Definitions 4.3 and 4.4 for calculus formulas). As
previously, we formally state this result in the following Lemma.

54 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Lemma 10.2 (Safety in Calculus and Query Transformation Rules)

Given a calculus and query transformation rule,

φ⊕ Q
φ∗ ⊕Q∗

and let D = (S,DC, IF) be a database instance of an extended database schema
D = (S,DC, IF), then:

φ is a safe calculus formula and Q is a safe query,
iff
φ∗ is a safe calculus formula and Q∗ is a safe query
Proof

Let us see the proof for the main calculus and query transformation rules.

Case (1). It can be reasoned that:

(a) those range restricted c-terms in φ, ψ and Q by means of e1 ./ e2, now
they are range restricted by means of e1 / x, e2 / y, x ⇓ y; in addition, by
hypothesis, the c-terms of e1 and e2 are range restricted and, thus, the
variables x and y are range restricted too.

(b) the atomic formulas of φ and ψ are safe by hypothesis; in addition, the
atomic formulas e1 / x, e2 / y, x ⇓ y are safe, since e1 and e2 do
not contain, by hypothesis, key variables, and the variables x and y are
variables distinct from key variables due to the renaming of quantified
variables.

The cases (2), (3) and (4) are similar.
The cases (5) and (6) are similar. Let us see the case (6). It can be reasoned
that:

(a) those range restricted c-terms in φ, ψ and Q by means of Ai e1 . . . ek / x,
now they are range restricted by means of R(y1, . . . , yn), e1 / y1, . . . , ek /
yk, yi / x; in addition, by hypothesis, the c-terms of e1, . . . , ek are range
restricted and, thus the variables y1, . . . , yn, x are range restricted too.

(b) the atomic formulas of φ and ψ are safe by hypothesis; in addition, the
atomic formula R(y1, . . . , yk, . . . , yi, . . . , yn) is safe, since it contains new
variables by the renaming of quantified variables and they are bounded,
and for each yi (1 ≤ j ≤ k), there exists one ei / yi; finally, the atomic
formulas e1 / y1 ∧ . . . ∧ ek / yk ∧ yi / x are safe, since, by hypothesis,
the variable x is bounded and e1, . . . , ek do not contain key variables; in
addition, the variables y1, . . . , yk, yi are also bounded and the variable yi

Database Query Languages and Functional Logic Programming 55

is not a key variable.
The cases (7) and (8) are similar. Let us see the case (7). It can be reasoned
that:

(a) those range restricted c-terms in φ, ψ and Q by means of f e1 . . . en / x,
now they are range restricted by means of f y1 . . . yn/x, e1/y1, . . . , en/yn;
in addition, by hypothesis, the c-terms of e1, . . . , ek are range restricted
and, thus the variables y1, . . . , yn are range restricted too.

(b) the atomic formulas of φ and ψ are safe by hypothesis; in addition, the
atomic formula f y1 . . . yn / x is safe, since y1, . . . , yn are new variables
distinct from key variables and, by hypothesis, the variable x is bounded;
finally, the atomic formulas e1 / y1, . . . , en / yn are safe, since, by hypoth-
esis, e1, . . . , en do not contain key variables and the variables y1, . . . , yn
are bounded.

Case (9). It can be reasoned that:
(a) those range restricted c-terms in φ, ψ and Q by means of t / x, now they

are range restricted by means of x = t; in addition, by hypothesis, the
c-terms of t and the variable x are range restricted;

(b) the atomic formulas of φ and ψ are safe by hypothesis; in addition, the
atomic formula x = t is safe, since, by hypothesis, x is a key variable and
t contains no key variables.

Therefore, the calculus formulas φ and ψ are safe, the query Q is safe, and,
finally, the calculus formula ∃z̄.ψ ∧ x = t is safe.
Case (10). It can be reasoned that:

(a) The elimination of t / x does not affect to the range restricted condition
since x 6∈ formula key(φ ∧ (¬)∃z̄.ψ ∧ t / x)

(b) The formulas in φ ∧ (¬)∃z̄.ψ{x/t} are safe since t / x is eliminated but
x 6∈ formula key(φ ∧ (¬)∃z̄.ψ ∧ t / x).

Calculus and Algebra Equivalence

In this subsection, we will show two additional results in two Lemmas
which will prove the equivalence of the calculus and algebra transformation rules,
and are used in the proof of Theorem 6.2. From a non-formal point of view, the
first result states the following: once applied a given transformation rule, then

• each answer of φ and each tuple represented by πProj (σSelect(δRen(Ri× . . .

× Rj))) is a permutation of an answer of φ∗ and a tuple represented by

56 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

πProj∗(σSelect∗(δRen∗(R∗
i× . . .×R∗

j))).
Now, we formally state this results in the following Lemma.

Lemma 10.3 (Answers in Calculus and Algebra Transformation Rules)

Given a calculus and algebra transformation rule,

φ ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)

φ∗ ⊕ ∆∗ ⊕ (Rel∗|Select∗|Proj∗|Ren∗)

and let D = (S,DC, IF) be a database instance of an extended database schema
D = (S,DC, IF), then:

there exists W1×W2, which is a permutation of a tuple (V1, . . . , Vn), such that:

• W1 = ȳη for a given substitution η, with x̄η ∈ Ans(D, φ) and ȳ = x̄ \
dom(∆) (i.e. variables of x̄ and not occurring in the domain of ∆); and

• W2 = πProj(W3) and W3 ∈ σSelect(δRen(Rel));

where, for each xi ∈ dom(∆), we have to consider the following:
• if {xi/Ai} ∈ ∆, then xiη ∈ [|Ai|]DW3

;
• if {xi/ei} ∈ ∆, then there exists a substitution η′ such that η′ = η ◦λ and

xiη ∈ [|ei|]Dη′, for a given substitution λ;
iff
there exists a tuple W ∗

1×W ∗
2 , which is a permutation (V1, . . . , Vn), such that :

• W ∗
1 = z̄η∗ for a given substitution η∗, with ūη∗ ∈ Ans(D, φ∗) and z̄ =

ū \ dom(∆∗); and, finally,
• W ∗

2 = πProj∗(W ∗
3) and W ∗

3 ∈ σSelect∗(δRen∗(Rel∗));

where, for each ui ∈ dom(∆∗), we have to consider the following:
• if {ui/Ai} ∈ ∆∗, then uiη

∗ ∈ [|Ai|]DW∗
3
;

• if {ui/ei} ∈ ∆∗, then there exists a substitution η′′ such that η′′ = η∗ ◦λ∗

and uiη∗ ∈ [|ei|]Dη′′, for a given substitution λ∗.
Proof

(1)
φ ∧ (¬)∃z̄.∃y1 . . . ∃yn.ψ ∧ Ri(y1, . . . , yn) ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)

φ ∧ (¬)∃z̄.ψ ⊕ ∆ ◦ {yj/ρ(Aj)} ⊕ (Rel,Ri|Select|Proj|Ren, ρ)

Let us see the positive case. Assume a substitution η, such that x̄η ∈ Ans(D, φ∧
∃z̄.∃y1. ∃yn.ψ ∧ Ri(y1, . . . , yn)). Then, there exists a substitution η∗ =
η ◦ {zk/sk, yj/lj} such that (D, η∗) |=C Ri(y1, . . . , yn) and, thus, yjη∗ ∈ Vjλ,
where λ ∈ Subst⊥,F and (V1, . . . , Vn) ∈ Ri, which is a schema instance of the re-
lation Ri. In this case, we have to prove that if yj is free in φ∧∃z̄.ψ, then yjη∗ ∈
[|ρ(Aj)|]DW ∗

3
, since {yj/ρ(Aj)} ∈ ∆∗. However, yj is free since, by the safety condi-

Database Query Languages and Functional Logic Programming 57

tion in the calculus formulas, there exists an equation yj = tj in φ∧∃z̄.ψ. Now,
it is enough to consider W ∗

1 = W1, W ∗
2 = W2 and W ∗

3 = (V1, . . . , Vn)×W3,
in such a way that yjη∗ ∈ Vjλ ⊆ [|ρ(Aj)|]DW∗

3
, and W ∗

3 ∈ σSelect(δRen∗(Rel∗)).
In addition, zη∗ = zη if z 6≡ yj , and zη∗ = yjη

∗ if z ≡ yj , satisfying that
z̄η∗ ∈ Ans(D, ψ) and W1 = W ∗

1 = ūη∗ with ū = z̄ \ dom(∆∗).

Let us see the negative case. It can be reasoned as previously, assuming (W1, . . . , Vj ,

. . . , Wn) ∈ Ri such that yjη∗ ∈ Vjλ; and W ∗
3 = (V1, . . . , Vn) × W3.

(2)
φ ∧ (¬)∃z̄.ψ ∧ yi = ti ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)
φ ∧ (¬)∃z̄.ψ ⊕ ∆

∗ ⊕ (Rel|Select∗|Proj∗|Ren)

? φ and ψ contain neither formulas R(y1, . . . , yn), nor e / x
? Decomp((¬)yi∆ = ti∆|Select|Proj|∆) = (Select

∗|Proj∗|∆∗
)

Let us see the positive case. There exists a substitution η∗ = η ◦ {zi/si}, such
that (D, η∗) |=C yi = ti, and thus yiη∗ = tiη

∗. Now, by the safety condition, we
have that {yi/Ai} ∈ ∆ and, in addition, yi is free in φ∧∃z̄.ψ∧yi = ti. Therefore,
yiη

∗ = yiη and yiη ∈ [|Ai|]DW3
. Now, we need to distinguish cases by considering

the form of ti∆:
• ti∆ is a variable z, and thus ti is a variable u. In this case, we need to

consider two subcases:
? u is free in φ ∧ ∃z̄.ψ ∧ yi = ti. In this case u ≡ ti and thus uη∗ =

uη = yiη, ensuring that uη ∈ [|Ai|]DW3
. Therefore, we can take W ∗

1 =
(V1, . . . , Vi−1, Vi+1, . . . , Vn) whenever W1 = (V1, . . . , Vi, . . . , Vn) and
uη ∈ Viλ, W ∗

2 = π
Proj,

=
yi∆

(W ∗
3), and W ∗

3 = W3×Vi, in such a way

that W ∗
1×W ∗

2 and W1×W2 contain the same elements. In addition,
by hypothesis (i.e. u is free in φ ∧ ∃z̄.ψ ∧ yi = ti), we have that

uη ∈ [|
=

Ai |]DW∗
3
, where {u/

=

Ai} ∈ ∆;
? u is not free in φ ∧ ∃z̄.ψ ∧ yi = ti, then either u is a key or non-key

variable or it occurs in an approximation equation e / u. However,
given that u∆ is variable, this contradicts the safety condition and the
condition of the transformation rule.

• ti∆ is an attribute Bi. Therefore ti ≡ ui where ui is a variable and, in
addition, {ui/Bi} ∈ ∆. Then, on one hand, we have that yiη ∈ [|Ai|]DW3

,
where {yi/Ai} ∈ ∆, and, on the other hand, uiη ∈ [|Bi|]DW3

with yiη = uiη.
Therefore, we have that W3 |=A Ai = Bi. Now, we can take W ∗

3 = W3,
W ∗

2 = W2, where W ∗
3 ∈ σSelect, yi∆=ti∆(δRen(Rel)), W ∗

2 = πProj(W ∗
3)

and W ∗
1 = W1, since, by the safety condition and the condition of the

58 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

transformation rule, ui is none of the variables of ȳ.
• The rest of cases of ti∆ can be proved by structural induction.

Let us see the negative case. It can be reasoned as before. In the case of ti∆
is variable, uη /∈ [|Ai|]DW3

. Assuming [|Ai|]DW3
= Vi then we can take as before

W ∗
1 = (V1, . . . , Vi−1, Vi+1, . . . , Vn), W ∗

3 = W3×Vi in such a way that W ∗
2 =

π
Proj,

6=
yi∆

(W ∗
3) and W ∗

1×W ∗
2 and W1×W2 contain the same elements. The case

of ti∆ is an attribute can be reasoned as before proving that W3 |=A Ai 6= Bi.

(3)
φ ∧ (¬)∃z̄.∃x.ψ ∧ e / x ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)
φ ∧ (¬)∃z̄.ψ ⊕ ∆ ◦ {x/e} ⊕ (Rel|Select|Proj|Ren)

? φ and ψ contain no formulas R(y1, . . . , yn)

Let us see the positive case. Let η be a substitution such that x̄η ∈ Ans(D,∃z̄.∃x.
ψ ∧ e / x). Then, we can consider a substitution η∗ = η ◦ {x/s, zi/si} such that
(D, η∗) |=C e / x. Therefore, xη∗ ∈ [|e|]Dη∗. Now, it is enough to consider
W ∗

1 = W1, W ∗
2 = W2, W ∗

3 = W3, and uη∗∗ = uη∗ if u occurs in e but is not free
in ∃z̄.ψ. With this choice, xη∗ ∈ [|e|]Dη∗∗ if {x/e} ∈ ∆.

Let us see the negative case. It can be reasoned as before, where η∗ must be
taken such that xη∗ ∈ [|e|]Dη∗; it ensures the result since, by the safety condition,
x is not free in ψ ∧ ¬∃.z̄.φ, and therefore η∗ = η|free(ψ∧¬∃.z̄.φ)∪var(Q).

The cases (4) and (5) are similar. The negative case is similar also to the
positive one. Let us see the positive case.

(4)
φ ∧ (¬)∃z̄.ψ ∧ t1 ⇓ t2 ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)
φ ∧ (¬)∃z̄.ψ ⊕ ∆

∗ ⊕ (Rel|Select∗|Proj∗|Ren)

? φ and ψ contain neither formulas R(y1, . . . , yn), e / x, nor y = t
? t1∆ or t2∆ contains no free variables in φ ∧ (¬)∃z̄. ψ ∧ t1 ⇓ t2
? Decomp((¬)t1∆ ./ t2∆|Select|Proj|∆) = (Select

∗|Proj∗|∆∗
)

Let η be a substitution, such that x̄η ∈ Ans(D,∃z̄.ψ ∧ t1 ⇓ t2). Then, we can
find a substitution η∗ = η ◦ {zi/si} such that (D, η∗) |=C t1 ⇓ t2. This means
t1η

∗ ↓ t2η∗ and t1η∗, t2η∗ ∈ adom(t1,D)∪adom(t2,D). Now, we can distinguish
the following cases for t1∆ (similarly with t2∆):

• t1∆ is a variable y. Then, we have that t1 is a variable u. In this
case, t2∆ contains no free variables. Otherwise, it contradicts the safety
condition and the condition of the transformation rule. Therefore, since
xiη ∈ [|Ai|]DW3

for each {xi/Ai} ∈ ∆ with xi variable of t2, then we have
that t2η = t2η

∗ ∈ [|t2∆|]DW3
, and, by hypothesis, t1η∗ ∈ adom(t1,D) ∪

Database Query Languages and Functional Logic Programming 59

adom(t2,D) and t2η
∗ ∈ adom(t1,D) ∪ adom(t2,D). In addition, t1η∗ ↓

t2η
∗ is satisfied, therefore t1η∗ ∈ [|

./

t2∆ |]DW3
. On the other hand, since

t1 is a variable, by the safety condition, we can reason that it is free;
thus t1η∗ = uη∗ ∈ Vi where W1 = (V1, . . . , Vi, . . . , Vn). Now, as previous
cases, it is enough to consider W ∗

1 = (V1, . . . , Vi−1, Vi+1, . . . , Vn), where
W ∗

2 = π
Proj,

./

t2∆
(W ∗

3), and W ∗
3 = W3×Vi, where W ∗

1×W ∗
2 and W1×W2

contain the same elements; in addition, we have that uη∗ ∈ [|
./

t2∆ |]DW∗
3

and {u/
./

t2∆} ∈ ∆∗;
• t1∆ is an attribute name, for instance, B. Now, we have that t1 ≡

u, where u is a variable, and {u/B} ∈ ∆. In addition, we have, by
hypothesis, that uη ∈ [|B|]DW3

. On the other hand, t1η ≡ uη and uη ↓ t2η∗;
as previously, t2 contains no free variables, and thus t2η∗ ∈ [|t2∆|]DW3

.
Therefore, we have that W3 |=A t1∆ ./ t2∆, and taking W ∗

1 = W1,
W ∗

2 = W2 and W ∗
3 = W3, we conclude the result.

• The rest of cases of t1∆ can be proved by structural induction.

Now, the additional second result states the following: once applied a given
transformation rule, then

• φ is a safe calculus formula and πProj (σSelect(δRen(Ri× . . .×Rj))) is a
closed algebra expression iff φ∗ is a safe calculus formula and πProj∗(σSelect∗

(δRen∗(R∗
i× . . .×R∗

j))) is a closed algebra expression;
where the Definitions 4.5 (Safe Calculus Formulas) and 5.7 (Algebra Expres-
sions), which state the safety conditions for the calculus formulas and the closed
conditions for the algebra expressions, respectively, are modified as follows:

(a) Safe Calculus Formula (Definition 4.5) is replaced by:
(1) all the c-terms and atomic formulas occurring in φ are range restricted

and safe, respectively; and,
(2) the only bounded variables occurring in φ are variables of formu-

la key(φ) ∪formula nonkey(φ) ∪ approx(φ), or variables of Dom(∆).
Now, the definitions of the safety conditions for the calculus formulas (i.e. range
restricted in calculus formulas and safe atomic formulas) are modified as follows:
(a.1) Range Restricted C-Terms of Calculus Formulas (Definition 4.4) is re-

placed as follows:
(1) t occurs in formula key(φ)∪formula nonkey(φ), or {t/A} ∈ ∆ where

60 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

A ∈ Key(δRen(Rel)) ∪NonKey(δRen(Rel));
(2) there exists one equation e♦c e′ (♦c ∈ {=,⇑,⇓, /}) in φ, such that t

belongs to cterms(e) (resp. cterms(e′)) and every c-term of e′ (resp.
e) is range restricted in φ.

(a.2) Safe Atomic Formulas (Definition 4.3) is replaced as follows:

(1) R(x1, . . . , xk, xk+1, . . . , xn) is safe, if the variables x1, . . . , xn are bound
in φ, or they are free variables with {xi/Ai} ∈ ∆ and Ai ∈ Key(δRen
(Rel)) ∪ NonKey(δRen(Rel)); in addition, for each xi, i ≤ nKey(R),
there exists one equation xi = ti in φ, or {xi/Ai} ∈ ∆ where Ai ∈
Key(δRen(Rel));

(2) x = t is safe, if the variables occurring in t are distinct from the variables
of formula key(φ), and x is a variable of formula key(φ) or {x/A} ∈
∆ where A ∈ Key(δRen(Rel));

(3) t ⇓ t′ and t ⇑ t′ are safe, if the variables occurring in t and t′ are distinct
from the variables of formula key(φ) and {y | y∆ ∈ Key(δRen(Rel))};

(4) e / x is safe, if either the variables occurring in e are distinct from the
variables of formula key(φ) and {y | y∆ ∈ Key(δRen(Rel))}; and x is
bounded in φ, or x is free in φ and {x/e} ∈ ∆.

(b) Algebra Expressions (Definition 5.7) is replaced by:
(1) Ψ must be closed w.r.t. key values; that is, Key(Ψ) ∪ {yi∆ | {yi/Ai} ∈

∆, yi free in φ and Ai ∈ Key(δRen(Rel))} = ∪
R∈Rel(Ψ) Key(δRen(Rel)),

where Key(Ψ) and Rel(Ψ) represent the set of key attribute names and
relation names occurring in Ψ, respectively;

(2) Ψ must be closed w.r.t. data destructors and function inverses; that is,
whenever π ♦a

c.index(e)
or σc.index(e)♦ae∗ (resp. π ♦a

f.index(e)
or σf.index(e)♦ae∗)

occurs in Ψ, then π ♦a

c.i(e)
or σc.i(e)♦ae∗ (resp. π ♦a

f.i(e)
or σf.i(e)♦ae∗) must

occur in Ψ, for every 1 ≤ i ≤ n with c ∈ DCn (resp. f ∈ IFn).

Note that the new safety and closed conditions coincide with the original ones
(i.e. Definitions 4.3, 4.4 and 4.5 for calculus formulas, and Definition 5.7 for
algebra expressions), whenever ∆ = id and φ = ∅, respectively. Finally, the
previous mentioned safety conditions and the rule conditions expressed in trans-
formation rules (4) and (5) (i.e. t1∆ or t2∆ contains no free variables), allow
us to progress in the transformation. As previously, we formally state this result
in the following Lemma.

Database Query Languages and Functional Logic Programming 61

Lemma 10.4 (Safety in Calculus and Algebra Transformation Rules)

Given a calculus and algebra transformation rule,

φ ⊕ ∆ ⊕ (Rel|Select|Proj|Ren)

φ∗ ⊕ ∆∗ ⊕ (Rel∗|Select∗|Proj∗|Ren∗)

and let D = (S,DC, IF) be a database instance of an extended database schema
D = (S,DC, IF), then:

φ is a safe calculus formula and πProj(σSelect(δRen(Rel))) is a closed algebra
expression,
iff
φ∗ is a safe calculus formula and πProj∗(σSelect∗(δ Ren∗(Rel∗))) is a closed al-
gebra expression.

Proof

Case (1). It can be reasoned that:

(a)
(a.1) those range restricted c-terms in φ and ψ by the variables y1, . . . , yn,

now they are range restricted by means of ∆∗, since ∆∗ = ∆◦{yi/ρ(Ai)}
and ρ(Ai) ∈ Key(δRen∗(Rel∗)) ∪NonKey(δRen∗(Rel∗)); the rest of c-
terms occurring in φ and ψ are range restricted by hypothesis.

(a.2) those atomic formulas in φ and ψ that are safe by the variables y1, . . . , yn,
now they are safe by ∆∗; the rest of atomic formulas occurring in φ

and ψ are safe by hypothesis.
Therefore, the calculus formulas φ and ψ are safe, since the c-terms and
atomic formulas occurring in φ and ψ are range restricted and safe,
respectively, and, in addition, ∆∗ = ∆ ◦ {yi/ρ(Ai)} where ρ(Ai) ∈
Key(δRen∗(Rel∗)) ∪NonKey(δRen∗(Rel∗)).

(b) Ψ ≡ πProj(σSelect(δRen∗(Rel∗))) is closed w.r.t. key values, since ∆∗ =
∆ ◦ {yi/ρ(Ai)} where ρ(Ai) ∈ Key(δRen∗(Rel∗))∪NonKey(δRen∗ (Rel∗));
in addition, Ψ is closed w.r.t. data destructors and function inverses by
hypothesis.

Case (2). It can be reasoned that:
(a)
(a.1) the c-terms occurring in φ and ψ are range restricted by hypothesis;
(a.2) the atomic formulas occurring in φ and ψ are safe by hypothesis;

62 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Therefore, φ and ψ are safe by hypothesis; in fact, the elimination of
yi = ti does not affect the safety and range restricted conditions, since
both φ and ψ do not contain formulas R(y1, . . . , yn) or e / x;

(b) In this case, since yi = ti is safe and by the condition of the rule (i.e. φ
and ψ contain neither formulas R(y1, . . . , yn) nor e/x), then {yi/Ai} ∈ ∆
with Ai ∈ Key(δRen(Rel)); now, we need to consider the following cases
w.r.t. the form of ti∆:
? a variable, then Ψ ≡ π

Proj,
=
yi∆

(σSelect(δRen(Rel))) is closed w.r.t. key

values, since {yi/Ai} ∈ ∆ with Ai ∈ Key(δRen(Rel)) and ti∆ does not
affect the key variables; in addition, Ψ is closed w.r.t. data destructors
and function inverses by hypothesis.

? an attribute name, then Ψ ≡ πProj(σSelect, yi∆=ti∆(δRen(Rel))) is a
closed expression w.r.t. key values, since {yi/Ai} ∈ ∆ with Ai ∈
Key(δRen(Rel)); in addition, ti contains neither key variables xi, nor
∆ includes substitutions of the form {xi/Ai} with Ai key attribute;
finally, Ψ is closed w.r.t. data destructors and function inverses by
hypothesis.

? c(e1, . . . , en), with c ∈ DCn, and var(e1, . . . , en) = ∅, then Ψ ≡ πProj
(σSelect, yi∆=c(e1,...,en)(δRen(Rel))) is a closed algebra expression w.r.t.
key values, since {yi/Ai} ∈ ∆ with Ai ∈ Key(δRen(Rel)); in addition,
ti contains neither key variables xi, nor ∆ includes substitutions of the
form {xi/Ai} with Ai key attribute; finally, Ψ is closed w.r.t. data
destructors and function inverses by hypothesis.

? The case f e1 . . . en, with f ∈ IFn, and var(e1, . . . , en) = ∅ is similar.
? c(e1, . . . , en) (with c ∈ DCn) or f e1 . . . en (with f ∈ IFn), and

var(e1, . . . , en) 6= ∅, then we have to check the data destructors and
function inverses; that is, c.i(yi∆) = ei and f.i(yi∆) = ei with 1 ≤ i ≤
n. Now, as previously, we need to consider the following subcases:

− ei is a variable, then Proj∗ = Proj,
=

c.i(yi∆) or Proj∗ = Proj,
=

f.i(yi∆);
otherwise, Select∗ = Select, c.i(yi∆) = ei or Select∗ = Select, f.i(yi∆)
= ei with 1 ≤ i ≤ n; therefore, Ψ ≡ πProj∗(σSelect∗(δRen(Rel))) is
a closed algebra expression w.r.t. data destructors and function in-
verses; finally, Ψ is a closed algebra expression w.r.t. key values,
since {yi/Ai} ∈ ∆ with Ai ∈ Key(δRen(Rel));

− The rest of cases can be proved by structural induction.

Database Query Languages and Functional Logic Programming 63

Case (3). It can be reasoned that:
(a)
(a.1) those range restricted c-terms in φ and ψ by the variable x, now they

are range restricted by means of ∆∗, since ∆∗ = ∆ ◦ {x/e};
(a.2) those atomic formulas in φ and ψ that are safe by the variable x, now

they are safe by ∆∗;
Therefore, the calculus formulas φ and ψ are safe, since the c-terms and
atomic formulas occurring in φ and ψ are range restricted and safe, re-
spectively; in addition, the elimination of ∃x.e / x does not affect the
safety condition, since ∆∗ = ∆ ◦ {x/e};

(b) Ψ ≡ πProj(σSelect(δRen(Rel))) is a closed algebra expression w.r.t. key
values, and data destructors and function inverses by hypothesis.

The cases (4) and (5) are similar. Let us see the case (4). It can be reasoned
that:

(a)
(a.1) the c-terms occurring in φ and ψ are range restricted by hypothesis;
(a.2) the atomic formulas occurring in φ and ψ are safe by hypothesis;

Therefore, φ and ψ are safe by hypothesis; in fact, the elimination of
t1 ⇓ t2 does not affect the safety and range restricted conditions, since
both φ and ψ do not contain formulas R(y1, . . . , yn), e / x, or y = t;

(b) In this case, given that t1 ⇓ t2 is safe, the c-terms of t1 and t2 are range
restricted, and the condition of the rule (i.e. φ and ψ contain neither
formulas R(y1, . . . , yn), e / x, nor y = t), then we need to consider the
following cases:
? the variables of t1 are variables xi such that {xi/Ai} ∈ ∆, where Ai ∈

Key(δRen(Rel)) ∪ NonKey(δRen(Rel)); now, we have to consider the
following subcases w.r.t. the form of t2∆:

− a variable, then: Ψ ≡ π
Proj,

./

t1∆
(σSelect(δRen(Rel))) is a closed al-

gebra expression w.r.t. key values, since {xi/Ai} ∈ ∆, where Ai ∈
Key(δRen(Rel))∪NonKey(δRen(Rel)), and t2∆ do not affect the key
variables; in addition, Ψ is a closed algebra expression w.r.t. data
destructors and function inverses by hypothesis;

− a key attribute name Aj , then: Ψ ≡ πProj(σSelect, t1∆./t2∆(δRen
(Rel))) is a closed algebra expression w.r.t. key values, since {xi/Ai}
∈ ∆, where Ai ∈ Key(δRen(Rel))∪NonKey(δRen(Rel)), and, by the

64 Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

condition of the rule, {t2/Aj} ∈ ∆ with Aj ∈ Key(δRen (Rel)); in
addition, Ψ is a closed algebra expression w.r.t. data destructors and
function inverses by hypothesis;

− a non-key attribute name Aj , then: Ψ ≡ πProj(σSelect, t1∆./t2∆(δRen
(Rel))) is a closed algebra expression w.r.t. key values, since {xi/Ai} ∈
∆, where Ai ∈ Key(δRen(Rel))∪NonKey(δRen(Rel)), and t2∆ does
not affect the key variables; in addition, Ψ is a closed algebra expres-
sion w.r.t. data destructors and function inverses by hypothesis;

− c(e1, . . . , en), with c ∈ DCn, and var(e1, . . . , en) = ∅, then Ψ ≡
πProj(σSelect, t1∆./c(e1,...,en)(δRen(Rel))) is a closed algebra expres-
sion w.r.t. key values, since {xi/Ai} ∈ ∆, where Ai ∈ Key(δRen
(Rel))∪NonKey(δRen(Rel)), and t2∆ does not affect the key varia-
bles; in addition, Ψ is a closed algebra expression w.r.t. data des-
tructors and function inverses by hypothesis;

− The case f e1 . . . en, with f ∈ IFn, and var(e1, . . . , en) = ∅ is
similar.

− c(e1, . . . , en) (with c ∈ DCn) or f e1 . . . en (with f ∈ IFn), and
var(e1, . . . , en) 6= ∅, then we have to check the data destructors and
function inverses; that is, c.i(t1∆) ./ ei or f.i(t1∆) ./ ei, with 1 ≤
i ≤ n. Now, we have the following cases:

· ei is a variable, then Proj∗ = Proj,
./

c.i(t1∆) or Proj∗ = Proj,
./

f.i(t1∆); otherwise Select∗ = Select, c.i(t1∆) ./ ei or Select∗ =
Select, f.i(t1∆) ./ ei, with 1 ≤ i ≤ n; therefore, Ψ ≡ πProj∗(σSelect∗

(δRen(Rel))) is a closed algebra expression w.r.t. data destruc-
tors and function inverses; finally, Ψ is a closed algebra expres-
sion w.r.t. key values, since {xi/Ai} ∈ ∆, where Ai ∈ Key(δRen
(Rel)) ∪NonKey(δRen(Rel));

· the rest of cases can be proved by structural induction.
? the variables of t2 are variables xi such that {xi/Ai} ∈ ∆, where Ai ∈

Key(δRen(Rel)) ∪NonKey(δRen(Rel)); analogously to previous case.
? t1 and t2 contain variables not belonging to ∆; however, it contradicts

the condition of the transformation rule, where t1∆ or t2∆ contains no
free variables of φ ∧ ∃z̄, ψ ∧ t1 ⇓ t2.

