
PROLE 2006

XQuery within Logic Programming 1

J. M. Almendros-Jiménez2, A. Becerra-Terón3, F. J. Enciso-Baños4

Dpto. Lenguajes y Computación.
Universidad de Almeŕıa, Spain

Abstract

XQuery is a typed functional language for Web Databases. It is a query language
against XML documents. In this paper we study how to translate XQuery pro-
grams into logic programming. With this aim, each XQuery functional expression
is translated into logic rules and goals. The answers for the goals correspond with
answers for the query against XML documents.

Key words: Database Query Languages, Logic Programming,
XQuery Language.

1 Introduction

XQuery [12,5] is a typed functional language devoted to express queries against
of XML documents. It contains XPath 2.0 as a sub-language which supports
navigation, selection and extraction of fragments of XML documents. XQuery
also includes expressions to construct new XML values, and to integrate or
join values from multiple documents. In this framework many attempts for
implementing XQuery have been accomplished. For instance, XQuery language
has been implemented using a functional language as host language. This is
the case of XDuce [7] and CDuce [3], which use regular expression pattern
matching over XML trees and sub-typing as basic mechanism. Moreover, as
host language, both use OCAML. The language XGalax [8,5] is also a relevant
contribution to the implementation of XQuery in functional programming,
using also OCAML as host language. There are also several proposals for
introducing the definition and handling of XML documents rather than to

1 This work has been partially supported by the EU (FEDER) and the Spanish MEC under
grant TIN2005-09207-C03-02.
2 Email: jalmen@ual.es
3 Email: abecerra@ual.es
4 Email: fjenciso@ual.es

This paper was generated using LATEX macros provided by
Electronic Notes in Theoretical Computer Science

Almendros-Jiménez and Becerra-Terón and Enciso-Baños

implement XQuery. This is the case of the proposal around Haskell, such as
HaXML [11].

In addition, there are attempts to use logic programming for handling XML
documents. For instance, the Xcerpt project [10] proposes a pattern and rule-
based query language for XML documents using the so-called query terms
including logic variables for the retrieval of XML elements. The same can
be said for XPathLog (LOPIX system) [9] which is a Datalog-style extension
of XPath with variable bindings. Let us also remark the case of XCentric [6],
which can represent XML documents into logic programming and handle XML
documents by considering terms with functions of flexible arity and regular
types. Finally, some Prolog implementations include libraries for loading and
querying XML documents, such as SWI-Prolog [13] and CIAO [4].

In this paper, we are interested in the use of logic programming for the
handling of XQuery queries:
(i) A XML document can be seen as a logic program, by considering facts

and rules for expressing both the XML schema and document. This was
already studied in our previous work [1].

(ii) A XQuery expression can be translated into logic programming by con-
sidering a set of rules and goals. Some of the rules specialize the schema
rules of each XML document involved in the XQuery expression and oth-
ers are introduced in order to achieve the join operations between two or
more documents. In addition, for each XQuery expression, a specific goal
(or goals) is called, where appropriate arguments can be instantiated.

In our proposal XQuery is implemented into logic programming, by means
of a translation of XQuery expressions into logic rules. As far as we know
this is the first time that XQuery is implemented in logic programming. In
this implementation, we use as basis the implementation of XPath studied in
our previous works [1,2]. The advantages of such proposal is that XQuery
is embedded into logic programming, and therefore XQuery can be combined
with logic programs. For instance, logic programming can be used as inference
engine, one of the requirements of the so-called Semantic Web (http://www.
w3.org/2001/sw/). It opens a promising line of research of our work.

The structure of the paper is as follows. Section 2 will show the needed
preliminaries for this paper; section 3 will study the translation of XML doc-
uments into Prolog; section 4 will discuss the translation of XQuery into logic
programming; and finally, section 5 will conclude and present future work.

2 Preliminaries
An XML document basically is a labelled tree with nodes representing com-
posed or non-terminal items and leaves representing values or terminal items.
For instance, let us consider the following XML document:

<books>

<book year=”2003”>

<author>Abiteboul</author>

2

http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/

Almendros-Jiménez and Becerra-Terón and Enciso-Baños

<author>Buneman</author>

<author>Suciu</author>

<title>Data on the Web</title>

<review>A fine book.</review>

</book>

<book year=”2002”>

<author>Buneman</author>

<title>XML in Scotland</title>

<review>The best ever!</review>

</book>

</books>

representing a set of books, where each record stores the authors, titles and
reviews for each book; and each record has an attribute representing the
publishing year. Assuming that the previous document is stored in a file
called ”books.xml”, to list titles of all books published before 2003, you might
write: document("books.xml")/books/book[@year < 2003]/title. Here,
a XPath expression is used for describing the path in the XML tree to be
retrieved. In each tree node a boolean condition can be required. In the ex-
ample, the attribute year should be smaller than 2003. In this case, the result
would be <title>XML in Scotland</title>.

In order to introduce XQuery, let us start with the main feature; that is the
for-let-where-return constructions (”FLoWeR” expressions). XQuery uses
these expressions in order to build more complex queries. As second feature,
we can remark the use of XPath as sub-language in XQuery in order to traverse
over the structure of a XML document. For instance, to list the year and title
of all books published before 2003, you might write in XQuery:

for $book in document("books.html")/books/book

where $book/@year<2003

return <mybook> {$book/@year, $book/title} </mybook>

Here, in a declarative way, for each book of the XML file published before
2003, a new record labelled with mybook will store the year and titles. In
addition, the local definition $book involved in the for expression is used for
traversing the sequence of books in the XML file; next, the condition included
in the where expression allows us to filter those books with publishing year
before than 2003, and finally, the return expression builds a new document
as a sequence of labelled elements in which each element contains the year

and title of the retrieved books enclosed in the label mybook. In this case
the result would be:

<mybook year=”2002”>

<title>XML in Scotland</title>

</mybook>

Moreover, let expressions can be used for declaring local variables as in func-
tional languages. The difference between let and for expressions is that let
is used for local binding to one node of a XML document, whereas for al-
lows us to local bind to each element of a sequence of nodes. Whenever the
sequence is unitary, let and for have the same semantics. For instance, in

3

Almendros-Jiménez and Becerra-Terón and Enciso-Baños

order to list all books that are more expensive at Amazon than at Barnes and
Noble, we might write in XQuery the following expression:

let $am:=document("http://www.amazon.com/books.xml")/books,

let $bn:=document("http://www.bn.com/books.xml")/books

for $a in $am/book

for $b in $bm/book

where $a/isbn= $b/isbn and $a/price > $b/price

return <book>{ $a/title, $a/price, $b/price}</book>

For-let-where-return expressions can be nested building complex queries
involving two or more XML documents.

3 Translating XML Documents into Logic Program-
ming

In this section, we will show how to translate an XML document into a logic
program. We will use a set of rules for describing the XML schema and a
set of facts for storing the XML document. In general, an XML document in-
cludes: (a) tagged elements which have the form: < tag att1 = v1, . . . , attn =
vn > subelem1, . . . , sublemk < /tag > where att1, . . . , attn are the attributes
names, v1, . . . , vn are the attribute values supposed to be of a basic type

(string,integer,list of integers, etc), and subelem1, . . . , subelemk are subele-
ments; in addition, it can include (b) untagged elements which are of a basic

type.

Terminal tagged elements are those ones whose subelements are of basic
types. Otherwise, they are called non-terminal tagged elements. Two tagged
elements are similar whether they have the same structure; that is, they have
the same tag and attributes names, and the subelements are similar. Untagged
elements are always similar. Two tagged elements are distinct if they do not
have the same tag and, finally, weakly distinct if they have the same tag but
are not similar.

3.1 Numbering XML documents

In order to define our translation we need to number the nodes of the XML
document. Therefore, given an XML document we can consider a new XML
document called node-numbered XML document as follows. Starting from the
root element numbered as 1, the node-numbered XML document is numbered
using an attribute called nodenumber 5 where each j-th child of a tagged
element is numbered with the sequence of natural numbers i1.it.j when-
ever the ancestor is numbered as i1.it: < tag att1 = v1, . . . , attn = vn,
nodenumber = i1.it.j > elem1, . . . , elems < /tag >. This is the case
of tagged elements. If the j-th child is an string and the ancestor is a non-
terminal tagged element then the element is labelled and numbered as follows:
< unlabeled nodenumber = i1.it.j > elem < /unlabeled >; otherwise

5 It is supposed that ”nodenumber” is not already used as attribute in the tags of the
original XML document.

4

Almendros-Jiménez and Becerra-Terón and Enciso-Baños

the element is not numbered. It gives to us a left-to-right numbering of the
nodes of an XML document. An element in an XML document is leftmost
in the XML tree than other whether the node number is smaller w.r.t. the
lexicographic order of sequence of natural numbers.

In addition, we have to consider a new document called type and node-
numbered XML document numbered using an attribute called typenumber as
follows. Starting the numbering from 1 in the root of the node-numbered XML
document, each tagged element is numbered as: < tag att1 = v1, . . . , attn =
vn, nodenumber = i1. . . . , it.j, typenumber = k > elem1, . . . , elems < /tag >
and < unlabeled nodenumber = i1.it.j, typenumber = k > elemj <
/unlabeled > for ”unlabelled” nodes. In both cases, the type number of the
tag is k = l + n + 1 whenever the type number of the ancestor is l, and n
is the number of tagged elements weakly distinct to the ancestor, occurring
in leftmost positions at the same level of the XML tree. Therefore, all the
children of a tag have the same type number. For instance, with respect to
the running example, next we show the type and node numbering of the XML
document.

Example of type and node numbered XML Document

<books nodenumber=1, typenumber=1>

<book year=”2003”, nodenumber=1.1, typenumber=2>

<author nodenumber=1.1.1 typenumber=3>Abiteboul</author>

<author nodenumber=1.1.2 typenumber=3>Buneman</author>

<author nodenumber=1.1.3 typenumber=3>Suciu</author>

<title nodenumber=1.1.4 typenumber=3>Data on the Web</title>

<review nodenumber=1.1.5 typenumber=3>

<unlabeled nodenumber=1.1.5.1 typenumber=4> A </unlabeled>

<em nodenumber=1.1.5.2 typenumber=4>fine

<unlabeled nodenumber=1.1.5.3 typenumber=4> book. </unlabeled>

</review>

</book>

<book year=”2002” nodenumber=1.2, typenumber=2>

<author nodenumber=1.2.1 typenumber=3>Buneman</author>

<title nodenumber=1.2.2 typenumber=3>XML in Scotland</title>

<review nodenumber=1.2.3 typenumber=3>

<em nodenumber=1.2.3.1 typenumber=5>

<unlabeled nodenumber=1.2.3.1.1, typenumber=6> The </unlabeled>

<em nodenumber=1.2.3.1.2, typenumber=6>best

<unlabeled nodenumber=1.2.3.1.3,typenumber=6> ever! </unlabeled>

</review></book></books>

Let us remark that in practice the type and node numbering of XML
documents can be simultaneously generated during the translation of the XML
document into a logic program. In fact, the type and node numbered version
of the original XML document is not generated as an XML file. Here, we have
shown the type and node numbered version of the XML document only to
define the translation into logic programming.

3.2 Translation of XML documents
Now, the translation of the XML document into a logic program is as follows.
For each non-terminal tagged element in the type and node numbered XML

5

Almendros-Jiménez and Becerra-Terón and Enciso-Baños

document:

< tag att1 = v1, . . . , attn = vn, nodenumber = i, typenumber = k >
elem1, . . . , elems < /tag >

we consider the following rule, called schema rule:

tag(tagtype(Xi1 , . . . , Xit , [A1, . . . , An]), L, k):-

tagi1 (Xi1 , [Bi1 |L], r),
. . .,

tagit (Xit , [Bit |L], r),
att1(A1, L, r),

. . .,

attn(An, L, r).

where tagtype is a new function symbol used for building a Prolog term con-
taining the XML document; tagi1 , . . . , tagit , ij ∈ {1, . . . , s}, 1 ≤ j ≤ t, are
the set of tags of the tagged elements elem1, . . . , elems of the type and node-
numbered XML document (including unlabelled elements); Xi1 , . . . , Xit are
variables; att1, . . . , attn are the attribute names; A1, . . . , An are variables, one
for each attribute name; Bi1 , . . . , Bit are variables (used for representing the
node number of the children); L is a variable (used for representing the node
number of the tag). k is the type number of tag. r is the type number of
the tagged elements elem1, . . . , elems

6 . In addition, we consider facts of the
form: attj(vj, i, k) (1 ≤ j ≤ n). Finally, for each terminal tagged element
in the type and node numbered XML document: < tag nodenumber = i,
typenumber = k > value < /tag >, we consider the fact : tag(value, i, k).
For instance, the running example can be represented by means of a logic
program as follows:

Prolog program of an XML document

Rules (Schema):

--

books(bookstype(A, []), L,1) :-

book(A, [B|L],2).

book(booktype(A, B, C, [D]), L ,2) :-

author(A, [E|L],3),

title(B, [F|L],3),

review(C, [G|L],3),

year(D, L,3).

Facts (Document):

--

year(’2003’, [1, 1], 3).

author(’Abiteboul’, [1, 1, 1], 3).

author(’Buneman’, [2,1, 1], 3).

author(’Suciu’, [3,1,1], 3).

title(’Data on the Web’, [4, 1, 1], 3).

unlabeled(’A’, [1, 5, 1, 1], 4).

em(’fine’, [2, 5, 1, 1], 4).

review(reviewtype(A,B,[]),L,3):-

unlabeled(A,[J|L],4),

em(B,[K|L],4).

review(reviewtype(A,[]),L,3):-

em(A,[J|L],5).

em(emtype(A,B,[]),L,5) :-

unlabeled(A,[G|L],6),

em(B, [H|L],6).

unlabeled(’book.’, [3, 5, 1, 1], 4).

year(’2002’, [2, 1], 3).

author(’Buneman’, [1, 2, 1], 3).

title(’XML in Scotland’, [2, 2, 1], 3).

unlabeled(’The’, [1, 1, 3, 2, 1], 6).

em(’best’, [2, 1, 3, 2, 1], 6).

unlabeled(’ever!’, [3, 1, 3, 2, 1], 6).

6 Let us remark that since tag is a tagged element, then elem1, . . . , elems have been tagged
with ”unlabelled” labels in the type and node numbered XML document; thus they have a
type number.

6

Almendros-Jiménez and Becerra-Terón and Enciso-Baños

4 Translating XQuery into Logic Programming

In this section, we will present the technique for translating XQuery expres-
sions against an XML document into a logic program. With this aim, we will
show the general criteria for the transformation technique.
(i) The handling of an XQuery query involves the specialization of the schema

rules of the XML documents involved in the XQuery expression, together
with the inclusion of new rules, and the generation of one or more goals.

(ii) Each XPath expression included in the XQuery expression is associated
to an XML document. Thus, the translation of each XPath expression
involves the specialization of the schema rules of the associated XML
document.

(iii) Each return expression included in the XQuery expression is translated
into a new schema rule, whose role is to describe the structure of the new
XML document build from the return expression.

(iv) The outermost return expression in the XQuery expression is translated
into one or more goals. The answers of such goals allow the reconstruction
of the XML document representing the answer of the XQuery expression.

(v) For each local definition of for and let expressions, a specialized rule is
introduced corresponding to the XPath expression involved in the local
definition.

(vi) Each where expression included in the XQuery expression specializes the
rules obtained from XPath and for, let and return expressions.

Now, we can consider the following examples:

• Let us suppose a query requesting the year and title of the books published
before 2003. For this query the translation is as follows:

for $book in document (books.xml)/books/book

let $year = $book/@year

where $year<2003

return <mybook>{$year, $book/title}</mybook>

mybook(mybooktype(A,[B]),[C],1):-

query(B,[C],1),

year2(B,[C],2),

title2(A,[[D|C]],2).

year2(A,[C],2):-year(A,C,3).

title2(B,[C],2):-title(B,C,3).

query(D, [E], 1) :-

book(booktype(A,B,C,[D]), E, 2).

book(booktype(A,B,C,[D]), E, 2) :-

year(D, E, 3),

le(D, 2003).

where mybook is a new schema rule introduced by the return expression. In
the return expression, a new XML document is defined containing records
labelled with mybook and including the year as attribute and title as value.
In order to distinguish them from the original year and title predicates,
they are numbered as year2 and title2. This kind of schema rules have a
little difference w.r.t. the schema rules representing the original document.
They have introduced a predicate called query whose role is to retrieve the
query w.r.t. the source document. In other words, the query predicate is

7

Almendros-Jiménez and Becerra-Terón and Enciso-Baños

used for computing:

for $book in document (books.xml)/books/book

let $year = $book/@year

where $year<2003

That is, it allows us to retrieve the books published before than 2003. Once
computed, the new schema rule defines the new structure, as follows:

mybook(mybooktype(A,[B]),[C],1):-

query(B,[C],1),

year2(B,[C],2),

title2(A,[[D|C]],2).

This rule is defined from the return expression: "return <mybook>{$ye-
ar, $book/title}</mybook>". In this new structure, year and title are
taken from the original document. This fact is expressed by means of the
following rules:

year2(A,[C],2):-year(A,C,3).

title2(B,[C],2):-title(B,C,3).

Let us remark an important aspect in these rules. The use of node num-
bering in the variable C is the key for retrieving only those years before
than 2003 and, of course, the titles of the books for such years. C has been
previously instantiated by means of the rule query, retrieving those node
numbers which satisfy the proposed condition.

There is an additional difference of this kind of schema rules w.r.t. the
schema rules of the original document. The node numbering consists on
lists of sequences of natural numbers. This is due to XQuery expressions
can involve multiple XML documents. Therefore, the output document is
numbered in each node as seq1, . . . , seqn, whenever the XQuery expression
involves n documents wherein each document is numbered with sequences of
natural numbers seqi. In the previous example, we have only considered one
document as input and it is numbered with a unitary list (of sequences of
natural numbers). Finally, the type numbering is new and defined according
to the structure defined in the return expression. With respect to the query
predicate:

query(D, [E], 1) :- book(booktype(A,B,C,[D]), E, 2).

book(booktype(A,B,C,[D]), E, 2) :-

year(D, E, 3),

le(D, 2003).

remark that the rule head has a variable D taken from the book call in
the rule body. It represents the year of each book. The where expres-
sion forces to include year(D, E, 3), le(D, 2003) in the book body rule, which
requires that the year of the books is before than 2003. Such rule special-
izes the schema rule of the original document w.r.t. the XQuery expres-
sion. In this specialized version, author and title predicates have been
removed and le predicate (less than) has been added. Finally, the return

expression generates the goal :-mybook(A,B,1). The top-down evalua-

8

Almendros-Jiménez and Becerra-Terón and Enciso-Baños

tion of such query computes the answer: {A/mybooktype(’XML in Scotland’,[2002]),

B/[[2,1]]} which represents the following instance of the goal: mybook(mybooktype(’XML

in Scotland’, [2002]), [[2, 1]], 1), and represents, according to the new schema
rule, the following output document:

<mybook year="2002">

<title>XML in Scotland</title>

</mybook>

• Now, let us suppose the following XQuery expression, requesting the reviews
of books published before than 2003 occurring in two documents: the first
one is the running example, and the second one is as follows:

Second XML Document

<books>

<book year="2003">

<author>Abiteboul</author>

<author>Buneman</author>

<author>Suciu</author>

<title>Data on the Web</title>

<review>very good</review>

</book>

<book year="2002">

<author>Buneman</author>

<title>XML in Scotland</title>

<review>It is not bad</review>

</book> </books>

XQuery Expression

Let $store1 in document (books1.xml)/books,

$store2 in document(books2.xml)/books

for $book1 in $store1,

for $book2 in $store2

let $title= $book1/title

where $book1/@year<2003 and $title=$book2/title

return <mybook>{$title, $book1/review,

$book2/review}</mybook>

Here, we consider the following rules:

mybook(mybooktype(B,R,[]),[E,J],1):-

query(B,[E,J],1),

title3(B,[[G|E],[H|J]],2),

review3(R,[[I|E],[K|J]],2).

title3(B,[E,J],2):-title1(B,E,3).

review3(R,[E,J],2):-review1(R,E,3).

review3(R,[E,J],2):-review2(R,J,3).

query(B, [E,J], 1) :-

book1(book1type(A, B, C, [D]), E, 2),

book2(book2type(F, B, G, [I]), J, 2).

book1(book1type(A, B, C, [D]), E, 2) :-

year1(D, E, 3),

le(D, 2003),

title1(B, [F|E], 3).

book2(book2type(A, B, C, [D]), E, 2) :-

title2(B, [G|D], 3).

In this case, the return expression generates a new schema rule mybook in
which title is generated from the first document and review from both
documents. In addition, the query predicate computes the join of both
documents w.r.t. the title demanding those books with publishing year
previous than 2003. With this aim, the book1 rule –input schema rules are
numbered as 1 and 2 and output as 3– is specialized in order to retrieve
books previous than 2003 and titles. That is, in the original rule, author
and review predicates have been removed. In addition, the book2 rule
has been specialized in order to retrieve the book titles. The specialization
consists on the removing of author, review and year in the original rule.
Finally, the query predicate joins both documents by sharing the variable B
in the call of book1 and book2. In this case, the return expression generates
the goal: :-mybook(A, B, 1).

9

Almendros-Jiménez and Becerra-Terón and Enciso-Baños

5 Conclusions and Future Work

In this paper, we have studied how to translate XQuery expressions into logic
programming. It allow us to evaluate XQuery expressions against XML docu-
ments using logic rules. Our work is still in development. We believe that the
core of the XQuery language can be expressed in logic programming using the
presented technique. As future work, firstly, we would like to formally define
our translation; and secondly, we would like to implement our technique.

References

[1] J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-Baños.
Magic sets for the XPath language. In Procs. PROLE’05, 2005.

[2] J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-Baños.
Querying xml documents in logic programming. Technical report, Universidad
de Almeŕıa, available at http://www.ual.es/~jalmen, 2006.

[3] Veronique Benzaken, Giuseppe Castagna, and Alain Frish. CDuce: an XML-
centric general-purpose language. In Procs of ICFP’05, pages 51–63. ACM
Press, 2005.

[4] D. Cabeza and M. Hermenegildo. Distributed WWW Programming using
(Ciao-)Prolog and the PiLLoW Library. TPLP, 1(3):251–282, 2001.

[5] D. Chamberlin, Denise Draper, Mary Fernández, Michael Kay, Jonathan Robie,
Michael Rys, Jerome Simeon, Jim Tivy, and Philip Wadler. XQuery from the
Experts. Addison Wesley, 2004.

[6] Jorge Coelho and Mario Florido. Type-based xml processing in logic
programming. In Procs of the PADL’03, pages 273–285. LNCS 2562, 2003.

[7] H. Hosoya and B. C. Pierce. XDuce: A Statically Typed XML Processing
Language. TOIT, 3(2):117–148, 2003.

[8] A. Marian and J. Simeon. Projecting XML Documents. In Procs. of VLDB’03,
pages 213–224. Morgan Kaufmann, 2003.

[9] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML Data
Manipulation Language. TPLP, 4(3):239–287, 2004.

[10] S. Schaffert and F. Bry. A Gentle Introduction to Xcerpt, a Rule-based Query
and Transformation Language for XML. In Procs. of RuleML’02, 2002.

[11] Peter Thiemann. A typed representation for HTML and XML documents in
Haskell. JFP, 12(4&5):435–468, 2002.

[12] W3C. Xml query working group and xsl working group, XQuery 1.0: An XML
Query Language. Technical report, W3C Consortium, 2004.

[13] J. Wielemaker. SWI-Prolog SGML/XML Parser, Version 2.0.5. Technical
report, Human Computer-Studies (HCS), University of Amsterdam, March
2005.

10

http://www.ual.es/~jalmen

	Introduction
	Preliminaries
	Translating XML Documents into Logic Programming
	Numbering XML documents
	Translation of XML documents

	Translating XQuery into Logic Programming
	Conclusions and Future Work
	References

