
Constraint Logic Programming
over Sets of Spatial Objects

Jesús M. Almendros-Jiménez
Dpto. de Lenguajes y Computacion. Universidad de Almeria

jalmen@ual.es

Abstract
Constraint Logic Programming (CLP) is a framework integrating
Constraint Programming (CP) and Logic Programming (LP). CLP
is described as a general schema of combination of logic-based lan-
guages and constraint solvers. Recently, a constraint system for the
handling of constraints over sets of spatial objects has been pre-
sented. In this paper we study how to consider a CLP instance for
this kind of constraints. In particular, we study the fixed-point and
operational semantics of such instance. With respect to the opera-
tional semantics it is described how the constraint solver interacts
with the mechanism of resolution, in particular how to detect fail-
ure branches by means of a consistence constraint checker and how
to achieve constraint propagation and compute solved forms.

Categories and Subject Descriptors F.3.2 [Logics and meanings
of programs]: semantics of programming languages

General Terms Languages, Theory

Keywords CLP, Logic Programming

1. Introduction
Constraint Logic Programming (CLP) [10] is a theoretical frame-
work whose aim is to combine Constraint Programming (CP) and
Logic Programming (LP). The motivation of this integration is to
take advantage from the declarative and rule-based style of logic
programming for the incorporation of constraint problems which
can specified in a declarative way and easily combined with the
operational mechanism of logic programming. This paradigm can
be considered as the best escenario for testing constraint solvers.
In fact, most of constraint solvers has been primarily integrated to
current implementations of logic-based systems. In order to make
this integration one can formulate a query solving in logic program-
ming as a constraint problem by considering term unification as a
simple constraint system. Once we have made this identification,
constraint programming can be combined with logic programming
by adding new kind of constraints to the base constraint system
consisting on term unification.

On the other hand, in the field of Constraint Programming [3],
a wide research has been done in order to define specialized con-
straint systems for particular problems. For instance, linear equa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WCFLP’05 September 29, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-069-8/05/0009. . . $5.00.

tions and inequations over reals [13] for spatial objects handling,
boolean constraints [8] for circuit structure reasoning, linear con-
straints on integer intervals [11] for combinatorial discrete prob-
lems, and temporal constraints [16] for time and scheduling rea-
soning. For each one of these constraint systems both generic and
particular constraint solver techniques have been studied in order
to improve the searching of solutions. They typically are based on
heuristics, backtracking and branch and bound algorithms. Sev-
eral techniques like constraint propagation achieving local, arc
and path consistency, among others, ensure a good performance
of constraint solvers. Most of these techniques are closely related
with the basic operational mechanisms of logic-based languages,
in fact, some of them can be found in term unification and solution
searching in logic programming: backtracking for the traversal of
the search space of solutions of a logic goal, and constraint propa-
gation and consistence checking in the propagation of bindings in
the unification process.

The framework of constraint databases [12] is also a applica-
tion field of constraint programming. In this case there also exists
an interest of capturing the declarative nature of database query lan-
guages, whose main exponent is SQL. In this case, this integration
is based on the simple idea that a constraint can be seen as an ex-
tension of a relational tuple, called generalized tuple, or, vice versa,
that a relational tuple can be interpreted as a conjunction of equal-
ity constraints. Each generalized tuple finitely represents a possibly
infinite set of relational tuples, called extension of the generalized
tuple, one for each solution of the constraint. In this framework, re-
lations are now composed by generalized tuples, and operations on
relations like cross products, selections and projections can be now
generalized [15, 14, 5].

In this paper we focus on an special kind of problems which
has been studied in both frameworks. This is how to use constraints
for solving spatial problems. So far this kind of problems has been
solved by using linear and non-linear constraints which seem to
be suitable for modelling infinite and continuous spatial objects.
In spatial constraint databases there have been studied linear con-
straints handling [15, 14, 5] in which spatial reasoning is based on
linear equations and inequations. The basic idea is to see spatial
objects as infinite sets of points and provide a finite representation
of these infinite sets, with constraints over a dense domain. Most
known spatial data types like point, line and region can be mod-
eled with these frameworks, and distance-based operations can be
included on it [4]. With respect to constraint logic programming
constraint solvers for linear and non-linear constraints has been im-
plemented and tested [7, 6].

However, in our opinion, an interesting direction could be the
study of other kinds of constraint systems, specialized for any
class of spatial data types, but suitable for practical applications. In
particular, we are interested in modeling problems on sets of spatial
objects, where each spatial object can be a point, line, polygon, or

Figure 1. Metric and Topological Operations

S1 S2

mindist

pmindist

omindist

disjoint meet

neighbour

inside

outsideoverlap ncovers ncoveredby

cuts

mcovers mcoveredby

a region. In addition, the query language can handle metric and
topological queries on these object sets.

Recently, a constraint system based on these ideas has been pre-
sented in [2]. In the quoted work, a constraint solver for constraints
on sets of spatial objects (points, lines, polygons and regions) has
been studied. This constraint system handles these spatial data
types and constraints on them (equalities and inequalities, mem-
berships, metric, topological and structural constraints). For this
constraint system a suitable theory and constraint solving method
have been presented.

The natural extension of the quoted work is the integration of
the constraint system with logic programming, which gives rise to
a new instance of constraint logic programing for sets of spatial ob-
jects, named as CLP(SSO). With respect to our previous work, we
will present how to integrate our constraint system with logic pro-
gramming. In particular, we will define the syntax and (fixed point
and operational) semantics of this new instance, showing exam-
ples of CLP programs for modeling spatial problems and a set of
queries requesting spatial answers. With respect to the semantics
we will provide the corresponding instantiation of the general CLP
schema. In addition, we will discuss some issues about the opera-
tional semantics, such as, how unification is adapted for unifying
spatial objects, and how the constraint solver is integrated with the
resolution mechanism. The constraint solver presented in [2] makes
a distinction between a consistence checker which is used for dis-
carding search branches in the constraint solving process and a
constraint store which contains constraints over the so-called can-
didate objects, which represents the solution partially computed.
This particular structure of the constraint solver is here combined
with the resolution process, in order to prune search branches in the
search tree of a CLP program. In addition, we have included some
of the results presented in our previous paper in order to show a
complete version of our framework.

The structure of the paper is as follows. Section 2 present how
to introduce constraints on sets of spatial objects in a CLP pro-
gram. Section 3 formally defines the framework of CLP(SSO)
and present the fixed-point semantics. Section 4 presents the op-
erational semantics and the results of soundness and completeness.
Finally, section 5 concludes and presents future work.

2. Preliminaries
In this section we present the basis of the new instance of CLP
for handling sets of spatial objects. Firstly, we will review the
constraint system of sets of spatial objects presented in [2], and
secondly, we will present some examples of CLP programs and
queries handling this kind of constraints.

2.1 Constraints over Sets of Spatial Objects

Basically, we handle sets of spatial objects where a spatial ob-
ject can be a point, line, polygon or region. Points will be repre-
sented by means of pairs of real and variable coordinates: (1, 2)
and (x, 1); lines by means of an ordered sequence of points:
line[(1, 2), (4, 5), (9, 10)]; and the same can be said for poly-
gons and regions, where the points define a closed path (i.e. last
point is connected to the first one). Lines, polygons and regions are
not intended to contain more vertices.

With this representation we can describe sets of closed point-
based geometric figures: {(8, 1), line[(1, 2), (4, 5), (9, 10)]}. On
these spatial data types, a set of binary spatial operations is defined.
We can classify them in five groups: equality and membership re-
lations, set operations, metric operations, topological relations, and
finally, structural operations. We are not interested in a complete
set of operations, but enough for most usual spatial queries.

With respect to equality relations, spatial objects can be com-
pared, for instance (1, 2) = (2, 3), (1, x) = (1, 9), line[(1, 2),
(10, y)] = line[(z, 2), (10, 12)]. The first equality relation is
false, but the other two equality relations define a relation on x,
y and z, which can be seen as a constraint, that is, a requirement
that states which combinations of values from the variable domains
are admitted. In this case, x equal to 9, y equal to 12 and z equal
to 1. This can be expressed, at the same time, as constraints of the
form x = 9, y = 12, z = 1.

With respect to the membership relations, we can express
membership of points to a spatial object, for instance (1, 6) ∈
line[(1, 2), (1, 9)], which is trivially true, but we can also add
variables. However, we can also use the membership relation for
expressing that a spatial object belongs to a set of spatial objects.
For instance, A ∈ {line[(1, 2), (1, 9)], (9, 10)}. In this case, A
ranges on two spatial objects, line [(1, 2), (1, 9)] and (9, 10).
Combining membership relations we can build our first CSP using
spatial data. For instance, (1, x) ∈ A, A ∈ {line[(1, 2), (1, 9)],
(1, 10)}. The allowed set of values for x is then [2, 9] and 10.
This can be expressed by means of two constraints x ∈ [2, 9] and
x = 10.

With respect to the set operations, we consider union, intersec-
tion, and difference. We have two cases, for spatial objects and sets
of spatial objects. For instance, (1, 2) ∪ line[(1, 2), (9, 10)] rep-
resents the set of points belonging to both spatial objects. There-
fore, the constraint (1, x) ∈ (1, 2) ∪ line[(1, 2), (9, 10)] has a
solved form x = 2. An accurate treatment needs the difference.
When the difference involves two spatial objects, the result of per-
forming such operation can be a spatial object with holes. For this
reason, we allow solved forms in our framework, including geomet-
ric figures like line[(1, 2), (9, 10)] − (1, 2) representing a closed

Table 1. Spatial Problem and CLP program

C1

C2

C3

C4

C5

C6

T1

T2

T3

River

Lake

(1) city(c1,(16, 24)).
(2) city(c2,(27, 41)).

(3) city(c3,(40, 28)).
(4) city(c4,(50, 10)).

(5) city(c5,(60, 32)).
(6) city(c6,(75, 55)).
(7) tourist(t1,(12, 16)).

(8) tourist(t2,(23, 37)).
(9) tourist(t3,(57, 6)).

(10) road(road311,Road):- Road ∈ {line[(75,55),(60,32),(40,28)],line[(75,55),
(40,28),(16,24),(12,16)],line[(60,32),(50,10),(16,24)],

line[(57,6),(50,10),(40,28),(27,41),(23,37)]}.
(11) river(smallriver,River):-River=line[(52,60),(60,41),(50, 16),(0,28)].
(12) lake(biglake,Lake):- Lake=polygon[(64, 38),(62,35),(60, 36),(60, 34),

(56, 36),(58, 40),(62, 42)].
(13) bridge(Bridge):-Bridge=Road ∩ River |

road(Roadname,Road),river(Rivername,River).
(14) cities(C):-C ∈ {C1, C2, C3, C4, C5, C6} |

city(c1,C1),city(c2,C2),city(c3,C3),city(c4,C4),city(c5,C5),city(c6,C6).

Table 2. Queries and Answers
Query CSP Answer

(1)

List the part
of the river
that passes
through the lake

: −Parts ∈ setsegments(River),
Through = Parts ∩ Lake,
|river(smallriver,River), lake(biglake,Lake).

Through = line[(60, 41), (56, 35)],
Parts = line[(60, 41), (50, 16)]

(2)

Report the part
of the road
that touches
the lake and
its length

Parts ∈ setsegments(Road),
Touches = Parts ∩ Lake,
Parts neighbor Lake,
L = length(Touches),L 6= 0
|road(road311, Road), lake(biglake, Lake).

Touches = line[(64, 36), (62, 35)],
Parts = line[(17, 55), (60, 32)], L = 3.5

(3)

Report all
the cities that
can use water
from the river
(at most within 10 km)

D = mindist(City, River),
D ∈ [0, 10]
|cities(City),
river(smallriver, River).

D = 0, City = (16, 24);
D = 9, City = (40, 28);
D = 6, City = (50, 10);
D = 3, City = (60, 32)

(4)
Find tourist
resorts that are
within 7.5 km of a city

Near ∈ {T1, T2, T3} rangeq circle(City, 7.5),
|tourist(t1, T1), tourist(t2, T2), tourist(t3, T3),
cities(City).

Near = (23, 37), City = (27, 41)

(5)
Which city is
the closest to
any tourist resort?

Closest ∈ pmindist({C1, C2, C3, C4, C5,
C6}, {T1, T2, T3})
|tourist(t1, T1), tourist(t2, T2), tourist(t3, T3),
city(c1, C1), city(c2, C2), city(c3, C3),
city(c4, C4), city(c5, C5), city(c6, C6).

Closest =< (27, 41), (23, 37) >

(6)
List the cities
to the north of C3

(X, Y) = City, (U, V) = (40, 28), Y ∈ [U, 60],
|cities(City).

(X, Y) = (27, 41), (U, V) = (40, 28);
(X, Y) = (60, 32), (U, V) = (40, 28);
(X, Y) = (75, 55), (U, V) = (40, 28)

(7)
Report bridges
which are not in a city

Bridge /∈ {C1, C2, C3, C4, C5, C6}
|city(c1, C1), city(c2, C2), city(c3, C3),
city(c4, C4), city(c5, C5), city(c6, C6),
bridge(Bridge).

Bridge = (59, 43);
Bridge = (56, 31);
Bridge = (46, 27)

point-based geometric figure with holes. These holes are an arbi-
trary union of closed point-based geometric figures.

The third kind of operations are the metric ones (see figure
1). They are based on distances, and also handle spatial objects
and sets of spatial objects. We can suppose a fixed distance d(,)
for pairs of points: Euclidean, Manhattan, etc. The fixed distance
is not relevant, and we can suppose any of them. In this case
we have mindist, maxdist, pmindist, pmaxdist, omindist

and omaxdist. The first two represent the minimum and max-
imum distance between two spatial objects. For instance x =
mindist(line[(1, 2), (1, 10)], line[(3, 2), (12, 15)]), is a con-
straint with solved form x = 3. Distance-based queries have a par-

ticularity. They are rigid operations, that is, objects for which a
minimum (maximum) distance is computed must be a fully defined
object, avoiding the use of ranged variables in their description. For
instance, it is forbidden to formulate a constraint satisfaction prob-
lem of the form x = mindist((1, y), (1, 1)), y ∈ [1, 3]. The oper-
ations pmindist and pmaxdist (resp. omindist and omaxdist)
get the set of pairs of points (resp. objects) with the minimum (resp.
maximum) distance. For instance, P ∈ pmindist(line[(1, 2),
(1, 10)], line [(3, 2), (12, 15)]), requires the variable P, a new
kind of variable, to be a member of a set of pairs of spatial objects.
This set represents the set of pairs of points which are at the mini-
mum distance. The solved form will be P ∈ {{< (1, 2), (3, 2) >

Table 3. CLP Program for the Bridge Problem

C1

C2

C4

C3

ROAD
RIVER

C1

C2

C4

C3

RIVER
ROAD

(1) cities(C):- C ∈ { C1,C2,C3,C4 }
| city(c1,C1),city(c2,C2),city(c3,C3),city(c4,C4).

(2) road(line[A,B,C,D]):- A6=B,A6=C, A 6=D,B6=C,
B6=D,C6=D | cities(A),cities(B),cities(C),cities(D).

Query:
:-P ∈ Road ∩ River, Road disjoint (River-P)

| river(Rivername,River),road(Road).

Table 4. CLP Program for the Hospital Problem

HOSPITAL

C1

C2

C3 Query:
:- P ∈ pmindist({Road},{C1,C2,C3}) | city(c1,C1),city(c2,C2),city(c3,C3) .

}}. Therefore, we have to handle in addition to set of objects, set of
pairs of objects, using a couple of brackets as notation.

With respect to topological relations (see figure 1), they are
usual binary topological relations on spatial objects and set of spa-
tial objects. For instance, A ∈ {(1, 4), (4, 5)}, B ∈ {line[(1, 4),
(1, 10)], (4, 5)}, A inside B has as solved form A = (1, 4), B =
line[(1, 4), (1, 10)] ∨ A = (4, 5), B = (4, 5). Similarly, the con-
straint P ∈ {(1, 4), (4, 5)} inside {line[(1, 4), (1, 10)], (4, 5)}
has as solved form P ∈ {{< (1, 4), line[(1, 4), (1, 10)] >,
< (4, 5), (4, 5) >}}. A special case is rangeq, which is a topolog-
ical operation for range queries, such as the occurrence of a spatial
object or a set of spatial objects that fall on a certain distance from
a point or on a window. With this aim, we consider as special case
of spatial data types, the circle defined by a point and a given ra-
dius (circle) and a window given by two points (window). For
instance, A ∈ {(1, 2), (9, 10)} rangeq circle((0, 0), 3) has as
solved form A = (1, 2).

In addition, we have considered a set of structural operations in
order to compute the size of spatial objects, and the set of points
and line segments which conform the frontier of a spatial object
(and a set of spatial objects). They are setpoints, setsegments,
area, length and perimeter.

Finally, our constraint system can handle negation, but with
restricted use. Equality and membership relations can be used in
negative form 6= and /∈, but variables used in them (which can
be referred to distances, coordinates of points, spatial objects and
pairs of spatial objects) must be ranged in at least one positive
constraint in order to formulate a constraint satisfaction problem.
This restricted version of negation prevents anomalies in the use
of negation such as infinite answers for a constraint satisfaction
problem. For instance, C = A∩B, A /∈ {(1, 2), (3, 4)}, B /∈ {(1, 2)}
cannot be represented in solved form as a finite disjunction of
equality and membership relations for C, A and B. The problem is
that there is a infinite and not finitely representable set of solutions.

2.2 Examples of CLP Programs

In table 1 we show an example of CLP program handling this
kind of constraints. In this example, we have spatial information
about Cities (set of points), Tourist Resorts (set of points), Roads
(set of lines), River (line) and Lake (polygon). The left-hand side
figure illustrates the spatial data, and assuming the work area in
the window (0, 0) for lower-left corner and (80, 60) for the upper-

right corner, the CLP program of the right-hand side represents this
information.

Facts are supposed to be either atoms or constrained atoms. This
is the case of rules (1) to (12), where the shape of each spatial object
is declared. Rules can be used for defining some spatial operations.
For instance, in the example rule (13) computes the Bridges and
rule (14) collects the positions of the Cities. Note that the Road is
expressed as a set of line segments due to we cannot handle graphs
in our representation. With respect to the previous CLP program,
we can request the spatial queries (topological, distance-based and
directional) of table 2.

In our instance, a CLP program and query can be used for solv-
ing combinatorial problems as usual in constraint programming.
For instance, we can suppose the following problem. We have four
Cities for which a Road is planned to be build to connect them.
In addition, we can suppose that a River crosses the area in which
these Cities are located. The spatial problem is how to connect the
Cities by means of the Road in such a way that a unique Bridge is
needed. The left-hand side of the table 3 show two feasible solu-
tions, one of them violates the condition a unique Bridge has to be
build. This spatial problem can be model by means of CLP as is
shown in the right-hand side of table 3 (assuming the same repre-
sentation as before for cities and the river).

Finally, our framework can be used for modelling optimization
problems. For instance, we can suppose that now we would like
to build a new Hospital near three Cities but in some point of the
main Road. In addition, in order to provide service to each City, the
distance should be minimized, that is, distance is optimized. Now,
we can describe and formulate the problem as in the table 4.

3. CLP(SSO)
In this section we formally present the constraint system and the
instance CLP(SSO). Firstly we present our constraint system.

3.1 Constraint System

Let NVar be a set of numerical variables x, y, . . . , OVar a set of
variables for objects A,B, . . . , PVar a set of variables for pairs of
objects P,Q, . . . , and R the set of real numbers.

Now, we have a data constructor for pairs of coordinates (,) :
NType×NType → Point, where NType = NVar∪R, a set of data
constructors for spatial data types: ∅ :→ SDT, line : [Point] →
Line, polygon : [Point] → Polygon, and region : [Point] →
Region where SDT = OVar∪Point∪Line∪Polygon∪Region.

Table 5. Semantics of Operations
∪,∩,− : SDT × SDT → SetSDT, SetSDT×SetSDT → SetSDT

[|O1ΘO2|](µ,∆,Ω) = [|O1|](µ,∆,Ω)Θ[|O2|](µ,∆,Ω)

[|S1Θ S2|](µ,∆,Ω) = [|S1|](µ,∆,Ω)Θ [|S2|](µ,∆,Ω), where Θ ∈ {∪,∩,−}
=, 6=: SDT× SDT → Boolean, PSDT × PSDT → Boolean
∈, /∈: Point × SDT → Boolean, SDT × SetSDT → Boolean, PSDT × SetPSDT → Boolean
[|O1 = O2|](µ,∆,Ω) =def true if ∆µ(O1) = ∆µ(O2)
[|(p1, p2) ∈ O|](µ,∆,Ω) =def true if µ((p1, p2)) ∈ ∆µ(O)
mindist, maxdist : SDT× SDT → R, SetSDT× SetSDT → R

pmindist, pmaxdist : SDT × SDT → PSDT, SetSDT × SetSDT → PSDT
omindist, omaxdist : SetSDT × SetSDT → PSDT

[|mindist(O1, O2)|](µ,∆,Ω) =def

min{d((p1, p2), (q1, q2)) | (p1, p2) ∈ [|O1|](µ,∆,Ω), (q1, q2) ∈ [|O2|](µ,∆,Ω)}
if mindist([|O1|](µ,∆,Ω), [|O2|](µ,∆,Ω)) 6= ⊥, and ⊥, otherwise
[|mindist(S1, S2)|](µ,∆,Ω) =def

min{mindist(G1 ,G2) | G1 ∈ [|S1|](µ,∆,Ω), G2 ∈ [|S2|](µ,∆,Ω), mindist(G1,G2) 6= ⊥}
inside, outside, overlap, disjoint, meet, cuts, neighbor,
mcovers, ncovers, mcoveredby, ncoveredby : SDT× SDT → Boolean, SetSDT × SetSDT → SetPSDT
rangeq : SetSDT× Range → SetSDT

[|O1 inside O2|](µ,∆,Ω) =def true if [|O1|](µ,∆,Ω) ⊆ [|O2|](µ,∆,Ω)

[|S1 inside S2|](µ,∆,Ω) =def {(G1,G2) | G1 ∈ [|S1|](µ,∆,Ω), G2 ∈ [|S2|](µ,∆,Ω), and G1 ⊆ G2}
area : Region → R, length : Line → R, perimeter : Polygon ∪ Region → R,
area, length, perimeter : SetSDT → R setpoints, setsegments : SDT → SetSDT, SetSDT → SetSDT

[|area(S)|](µ,∆,Ω) =def

P

G∈[|S|](µ,∆,Ω),G is a region A(G)

Figure 2. Closed Point-Based Geometric Figures with Holes

a polygon without
a point

mindist defined

a polygon without
an edge

a region without
a region

mindist undefined

We have also a data constructor for pairs of spatial data types:
< , >: SDT × SDT → PairSDT, and PSDT = PVar ∪ PairSDT.
With respect to sets of spatial objects and pairs of spatial objects,
we have a set of data constructors for sets of (pairs of) spatial
objects: ∅ :→ SetSDT, { | } : SDT × SetSDT → SetSDT,
∅ :→ SetPSDT, and {{ | }} : PSDT × SetPSDT → SetPSDT.

Finally, we have data constructors for a special kind of spatial
data types, called Window, Circle such that window : Point ×
Point → Window, circle : Point × NType → Circle and
Range = Window ∪ Circle. In addition, Interval builds closed
real intervals: [,] : NType × NType → Interval.

Now we present a set of operations over the defined types. Some
operations are partial, that is, are not defined for some arguments.
Assuming the symbol ⊥ representing a special value called unde-
fined, we can consider the following types. For the type NType, we
have the binary operations =, 6=: NType×NType → Boolean, and
∈, /∈: NType×Interval → Boolean. The formal semantics is as
follows.

Given a valuation µ of numerical variables into R ∪ {⊥}, then
we denote by µ(n), where n ∈ NType, the value of n under the
valuation µ as the real number (or undefined), defined as µ(n) =
µ(x) if n ≡ x is a variable and µ(n) = n, otherwise.

Now, given n1, n2, n3 ∈ NType, and a valuation µ, we define
⊥ = ⊥,⊥ 6= ⊥ are both false; n1 = n2 iff µ(n1) = µ(n2); n1 6=
n2 iff µ(n1) 6= µ(n2); n1 ∈ [n2, n3] iff µ(n2) ≤ µ(n1) ≤ µ(n3);
and finally, n1 /∈ [n2, n3] iff µ(n2) > µ(n1) or µ(n1) > µ(n3).
⊥ represents undefined and therefore an incomparable value.

We denote by V al(NType) the set of valuations of numerical
variables into R ∪ {⊥}. Now, the value of a spatial object O under
a valuation µ ∈ V al(NType), denoted by µ(O), is a closed point-
based geometric figure (FIG), and it is defined as follows:

• µ((p1, p2)) =def {(µ(p1), µ(p2))} if none of the µ(pi) are ⊥;
and ∅, otherwise.

• µ(line[(p1, p2), (p3, p4), . . . , (pn−1, pn)]) =def {(r, s) | r =
α×µ(p2k+1)+(1−α)×µ(p2k+3), s = α×µ(p2k+2)+(1−
α)×µ(p2k+4), α ∈ [0, 1], 0 ≤ k ≤ n−4/2, k ∈ N, α ∈ R}, if
none of the µ(pi) is ⊥; and ∅, otherwise, where n ≥ 4, n ∈ N ,
and each pi ∈ NType.

• µ(polygon[(p1, p2), (p3, p4), . . . , (pn−1, pn)]) =def

{(r, s) | r = α × µ(p2k+1) + (1 − α) × µ(p2k+3), s =
α × µ(p2k+2) + (1 − α) × µ(p2k+4), α ∈ [0, 1], 0 ≤ k ≤
n− 4/2, k ∈ N, α ∈ R}
∪{(r, s) | r = α × µ(pn−1) + (1 − α) × µ(p1), s = α ×
µ(pn) + (1 − α)× µ(p2), α ∈ [0, 1], α ∈ R}, if neither of the
µ(pi) is ⊥; and ∅, otherwise, where n ≥ 4, n ∈ N

• µ(region[(p1, p2), (p3, p4), . . . , (pn−1, pn)]) =def

{(r, s) | r = α×µ(p2i+1)+β×µ(p2j+1), s = α×µ(p2i+2)+
β × µ(p2j+2), α + β = 1, α, β ≥ 0, α, β ∈ R, 0 ≤ i ≤
n − 2/2, i ∈ N, 0 ≤ j ≤ n − 2/2, j ∈ N} if neither of the
µ(pi) is ⊥; and ∅, otherwise, where n ≥ 4, n ∈ N

Spatial objects can be grouped in both sets of objects and sets of
pairs of objects. The operations on sets of (pairs of) spatial objects
are interpreted into closed point-based geometric figures with holes
(FH).

DEFINITION 3.1. Figures with Holes. Given FIG’s: F , Hi, a
figure with holes G has the form F − ∪k≥i≥1Hi where k ≥ 0,
Hi ∩ Hj = ∅ if i 6= j and ∪k≥i≥1Hi ⊆ F . The set ∪k≥i≥1Hi

is called the holes of G. The set of figures with holes is denoted by
FH. In addition:

(i) Ḡ denotes the figure obtained from G, adding the topological
frontier;

(ii) mindist(G,G′) (resp. maxdist(G,G′)) denotes the minimum
(resp. maximum) distance from G to G′, defined as follows:
mindist(G,G′) =def ⊥ if min{d((p, q), (r, s)) | (p, q) ∈
G, (r, s) ∈ G′} < min{d((p, q), (r, s)) | (p, q) ∈ Ḡ, (r, s) ∈
Ḡ′} and otherwisemindist(G,G′) =def min{d((p, q), (r, s))
| (p, q) ∈ G, (r, s) ∈ G′} and analogously for maxdist;

(iii) L(G) denotes the length of a line G;
(iv) P(G) denotes the perimeter of a polygon or region G;
(v) A(G) denotes the area of a region G. The three are defined as

⊥ whenever the figure has a hole.
(vi) PS(G) (resp. LS(G)) denotes the set of points (resp. line seg-

ments of the frontier) which define G.

An element of FH can have holes, which are in the topological
frontier of the object (see figure 2). When the distance (minimum
or maximum) from an element of FH to another element of FH
is computed, it could be that the nearest points are in the holes.
In this case, we consider both distances are undefined (see figure
2). The elements of FH can be grouped into sets, denoted by
SFH, and sets of pairs of elements of FH, denoted by SPFH.
Grouping FH into sets we can handle more complex spatial objects
like graphs, among others. Sets of (pairs of) spatial objects can
have variables representing spatial objects. Given a valuation ∆ of
variables of spatial objects into FH then:

• ∆(µ({O1, . . . , On})) =def {∆(µ(O1)), . . . ,∆(µ(On))} and
• ∆(µ({{< O1, O2 >, . . . , < On−1, On >}})) =def

{(∆(µ(O1)), ∆(µ(O2))), . . . , (∆(µ(On−1)), ∆(µ(On)))}

where eachOi ∈ SDT. We can also consider valuations of variables
representing pairs of spatial objects into pairs of FH’s, named as
PFH. We denote by V al(SDT) the set of valuations into FH’s
and V al(PSDT) the set of valuations into PFH.

In the table 5, we present the main operations on (sets of)
spatial objects. They are defined with regard to µ ∈ V al(NType),
∆ ∈ V al (SDT), and Ω ∈ V al(PSDT). The definitions of such
operations are not very complex, and they have only to take into
account that elements of FH can have holes, and therefore some
operations can be not defined, that is, they are defined as ⊥, mainly
when the operations involves (minimum and maximum) distances.
We have included the main cases. A full version can be found in
[1].

3.2 Spatial Constraint Satisfaction Problem

In this subsection we define what is a spatial constraint satisfaction
problem, by presenting its general form, a special class which rep-
resents the solved forms, and a set of conditions in order to ensure
that each spatial constraint satisfaction problem is equivalent to a
solved form.

DEFINITION 3.2. Spatial CSP.
A spatial constraint satisfaction problem (SCSP) Γ is a conjunc-
tion of typed boolean operations over the types NType, SDT,
PSDT, SetSDT, SetPSDT, Range and Interval of the form
Γ ≡ ϕ1, . . . , ϕn.

DEFINITION 3.3. Solution. A triple (µ,∆,Ω), where µ ∈ V al(
NType), ∆ ∈ V al(SDT) and Ω ∈ V al(PSDT) is a solution of a
SCSP Γ ≡ ϕ1, . . . , ϕn if each [|ϕi|](µ,∆,Ω) is equal to true. A
SCSP is called satisfiable whenever has at least a solution.

DEFINITION 3.4. Solved SCSP. A solved SCSP Π is a disjunc-
tion of spatial constraint satisfaction problems of the form Π ≡
W

i≥1 Γi where each Γi is of the form: Γi ≡ ϕ1, . . . , ϕn, and each
ϕj is a solved constraint of the form:

1. x = n where x ∈ NVar and n ∈ R ∪Dom(Γi)

2. x ∈ [n1, n2] − ∪k≥j≥1[hj , hj+1] where x ∈ NVar, n1, n2,
hj , hj+1 ∈ R ∪ Dom(Γi) and k ≥ 0; in addition, Γi(n1) ≤
Γi(hj) ≤ Γi(hj+1) ≤ Γi(n2), for all k ≥ j ≥ 1, and
[Γi(hj),Γi(hj+1)] ∩ [Γi(hl), Γi(hl+1)] = ∅ if j 6= l.

3. (x, y) ∈ O, where x, y ∈ NVar and O ∈ FH ∪Dom(Γi)

4. A = O − ∪k≥j≥1Hj where A ∈ OVar, O,Hj ∈ FH ∪
Dom(Γi) and k ≥ 0; in addition, ∪k≥j≥1Γi(Hj) ⊆ Γi(O),
and Γi(Hj) ∩Γi(Hl) = ∅ if j 6= l.

5. A ∈ S where A ∈ OVar and Γi(S) ∈ SFH.
6. P = Q where P ∈ PVar, where Q ∈ Dom(Γi) or Q ≡<
Q1, Q2 >, Q1, Q2 ∈ FH ∪Dom(Γi)

7. P ∈ SP where P ∈ PVar and Γi(SP) ∈ SPFH.

where there exists at most one solved constraint for each variable
x, A and P in each Γi. Variables x, A and P in the definition
represent the domain of Γi, denoted by Dom(Γi). Γi(x) (resp.
Γi(A), Γi(P)) denote the set of solutions represented by the solved
constraints in which occurs x (resp.A and P), and Γi(S), Γi(SP)
the set of SFH’s, respectively SPFH’s obtained from them.

DEFINITION 3.5. Solutions of a Solved SCSP.
A solved SCSP Π ≡

W

i≥1 Γi defines a set of solutions, denoted
by Sol(Π), and defined as Sol(Π) = ∪ΓiSol(Γi), where each
Γi defines a set of solutions which consists on triples (µ,∆,Ω),
recursively defined as follows:

µ =def

∪x=n∈Γi{x/µ(n)}

∪ (x ∈ [n1, n2] −∪k≥j≥1[hj , hj+1]) ∈ Γi,
r ∈ [µ(n1), µ(n2)], r /∈ ∪k≥j≥1[µ(hj), µ(hj+1)])

{x/r}

∪((x,y)∈O)∈Γi,(p,q)∈∆µ(O)){x/p, y/q}

∆ =def ∪(A=O−∪k≥j≥1Hj)∈Γi
{A/∆µ(O) − ∪k≥j≥1∆µ(Hj)}

∪(A∈S)∈Γi,G∈∆µ(S){A/G}

Ω =def ∪P=Q∈Γi{P/Ω∆µ(Q)}

∪(P∈SP)∈Γi,(G1,G2)∈Ω∆µ(SP){P/(G1,G2)}

Finally, Γi(x) =def µ(x), Γi(A) =def ∆(A) and Γi(P) =def

Ω(P), Γi(n) =def n if n ∈ R, Γi(O) =def O if O ∈ FH,
Γi(P) =def P if P = (G1,G2) and G1,G2 ∈ FH for each Γi.

In order to ensure that any spatial constraint satisfaction prob-
lem is equivalent to a solved SCSP we have to require that the SCSP
follows some syntactic conditions. We call safe SCSP to SCSP en-
suring these conditions.

DEFINITION 3.6. Range Restricted Variables. We say that a
variable α ∈ NVar ∪ OVar ∪ PVar occurring on a SCSP Γ is
range restricted if there exist (i) an equality constraint α = E or
(ii) membership constraint α ∈ E, such that E is ground (without
variables) or all the variables of E are range restricted.

We call that a variable is strongly range restricted considering
only the case (i) in the above definition. Finally, we require that
distance-based and structural operations are rigid.

DEFINITION 3.7. Rigid Constraints. Given a set of variables V ,
a spatial constraint is V-rigid if whenever an operation involv-
ing Θ ∈ {mindist, maxdist, pmindist, pmaxdist, omindist,
omaxdist, area, length, perimeter} is included in the form
Θ(O1, O2) (or Θ(O)) (resp. Θ(S1, S2) (or Θ(S))) then O1 and

O2 (or O) (resp. S1 and S2 (or S)) only contain variables of V
strongly range restricted.

DEFINITION 3.8. Safe SCSP. Given a set of variables V , a V-safe
SCSP is a SCSP where all the variables of V are range restricted,
and all the spatial constraints are V-rigid.

THEOREM 3.1. Safety. Each satisfiable var(Γ)-safe SCSP Γ is
equivalent to a solved SCSP.

3.3 CLP Programs

Now, we present the framework of CLP(SSO). Firstly, we define a
CLP(SSO) program, and after the fixed-point operational seman-
tics.

Now we have to assume a signature Σ which consists on a
set of predicate symbols p1, . . . , pn, and a set of function sym-
bols f1, . . . , fm and constants c1, . . . , ck , and in addition the spe-
cial typed function symbols [,], (,), < , >, ∪,∩,− line,
polygon, region, ∅, { }, {{ }}, window and circle, the op-
erations on sets of spatial objects, and finally, R. We denote by
ΣT the signature for (logic) terms, which consists on f1, . . . , fm,
c1, . . . , ck , [,], (,), < , >, line, polygon, region and R.
We denote by ΣC the signature for constraint terms, which con-
sists on [,], (,), < , >,∪,∩,− line, polygon,region, ∅,
{ }, {{ }}, window and circle.

From ΣT and the sets of variables Var (for logic values), NVar
(for real values) OVar (for spatial objects) and PVar (for pairs of
spatial objects), we can build the set of CLP terms, denoted by
Terms. In addition, we have to consider the Herbrand base obtained
from ΣT , denoted by T . Analogously, from ΣC and the same sets
of variables, we can build the set of CLP constraint terms, denoted
by Constrs, and we can consider the Herbrand base obtained from
ΣC , denoted by C, which consists on the sets FH, PFH, SFH
and SPFH.

DEFINITION 3.9. Program. A CLP(SSO) program P under a
signature Σ consist on rules of the form: p : −Γ|q1, . . . , qn, where
p, qi are atoms using predicate symbols of Σ and terms of the sig-
nature ΣT ; and Γ is a SCSP under the signature ΣC . In addition,
Γ is V-safe where V = var(Γ) \(var(p) ∪1≤i≤nvar(qi)). In the
particular case of p : −Γ, we call it a fact.

DEFINITION 3.10. Goal. A CLP(SSO) goal G under a signature
Σ is of the form: : −Γ|q1, . . . , qn, where qi are atoms using
predicate symbols of Σ and terms of the signature ΣT ; and Γ is
a SCSP under the signature ΣC . In addition Γ is V-safe where
V = var(Γ)\ ∪1≤i≤n var(qi). In the particular case of a goal
G ≡: − we write .

Let remark that terms in predicates can be neither sets nor
figures with holes. It is a syntactic condition which forces to carry
out them in the constraint side. In addition, programs and goals
are required to accomplish a safety condition in order to guarantee
each satisfiable safe goal w.r.t. a safe program can be represented
in solved form. This safety condition is adapted to CLP programs
and goals as follows. The variables of Γ should be ranged restricted
and operations occurring in Γ are rigid, but it is only required for
extra variables, that is, not occurring on the clause head and body.

Now, we can assume the domain D of our CLP-program which
consists on the sets T and C. A D-valuation ψ = (θ, µ,∆,Ω)
consist is a replacement of variables of Var, NVar, OVar and PVar,
by elements of T where µ(α) ∈ R if α ∈ NType, ∆(α) ∈ FH if
α ∈ OVar, Ω(α) ∈ PFH, if α ∈ PVar, and θ(α) ∈ T otherwise.
When applying a D-valuation ψ to a variable α we will write ψ(α)
or αψ.

In addition, we can consider D-substitutions which have the
form ψ = (θ, µ,∆, Ω) and map variables into elements of Terms

and Constrs. Finally, elements of Terms can be unified by means
of D-substitutions. In the case of usual logic terms it corresponds
with the usual unification of logic programming. In the case of R,
it basically consists on identification of real variables and values.
The case of objects and pairs of objects consists on identification of
figures. Figures are equals with they are defined with same sets of
points, therefore unification consists on unification of real variables
and values. The same can be said for intervals. Therefore, we can
still consider most general unifiers for our term domain.

Now, an interpretation I under a signature Σ, consists on sets
of sequences Ip = {v1 . . . vn | vi ∈ T ∪C} for each p ∈ Σ. In an
interpretation, each Ip corresponds with a subset of the Herbrand
base, that is, the Herbrand base element p(v̄) corresponds with the
sequence v̄ ∈ Ip. The set of interpretations under a signature Σ
forms a complete lattice under the ordering defined as follows.
I ⊆ I′ iff Ip ⊆ I′

p for each p ∈ Σ.

DEFINITION 3.11. Fixed Point Operator. Given a CLP(SSO)
program P , and an interpretation I under Σ, we define the fixed
point operator TP(I), for each p ∈ Σ, as follows:
TP(I)p = {v1 . . . vn | there exists a variant

p(t̄) : −Γ|q1(s̄1), . . . , qn(s̄n) ∈ P,
and there exists a D − valuation

ψ = (θ, µ,∆,Ω) such that tiψ ≡ vi,
Iqi ⊇ s̄iψ, and [|Γ|](µ,∆,Ω) is true}

TP(I)p defines a new interpretation TP(I). The application of
the operator computes the least Herbrand model of a CLP-program.

DEFINITION 3.12. Herbrand Model An interpretation I under a
signature Σ is a model of P iff Ip ⊇ t̄ψ for every D-valuation
ψ = (θ, µ,∆,Ω) such that Iqi ⊇ s̄iψ, [|Γ|](µ,∆,Ω) is true, for
every p(t̄) : −Γ|q1(s̄1), . . . , qn(s̄n) ∈ P . In this case we write
I |= P .

An interpretation I under a signature Σ satisfies a goal G ≡
: −Γ|q1(s̄1), . . . , qn(s̄n) iff there exists a D-valuation ψ =
(θ, µ,∆, Ω) such that Iqi ⊇ s̄iψ and [|Γ|](µ,∆,Ω) is true. In the
case, we write I |= Gψ.

THEOREM 3.2. Least Herbrand Model. The fixed point operator
computes the least model of a program P , that is:

(a) for every Herbrand model M of P there exists k such that
T kP(∅) ⊆ M;

and (b) T∞
P (∅) is a Herbrand model of P .

4. Operational Semantics of CLP(SSO)
In this section we will describe the operational semantics of our
constraint logic language. The operational semantics is based on
the combination of term unification and constraint solving. One of
the main aspects of the operational semantics in constraint logic
programming, and in particular, in our case are the efficiency of
the constraint solving. A constraint solver for the constraint system
presented should solve constraints on sets of spatial objects.

4.1 Minimum Bounded Rectangles and R-trees

With this aim, the constraint solver handles a constraint store in
which sets of spatial objects are represented by means of Minimum
Bounded Rectangles (MBR’s) to enclose objects and set of objects.
In the case of set of objects the MBR’s are organized in data
structures called R-trees. These spatial access methods are a similar
structure to the well-known data structures B-trees used for file
indexing. In the case of R-trees, each object is enclosed in its MBR
and stored in the leaves. Each internal node of the tree stores the
set of MBR’s enclosing its children and has as searching key the
MBR covering the children.

Figure 3. MBRs and R-trees

X

Y

M3

M4

*p2M1

* p4

* p3

p1

*

p6

*

* p7

*p5

M5

M6
* p9

p8

*

*p11 * p10

* p12

M7

M2

(0, 0)

This structure allows optimizations in the form of branch and
bound algorithms which takes into account the coordinates of the
MBR’s (upper-left corner and lower-right corner of the MBR). As
an example of this data structure, the figure 3 shows how to store
in an R-tree the points p1, . . . , p12 in which the MBR M1 encloses
the points p1, . . . , p4 and M2 the rest of points. At the same time
M1 is subdivided into M3 and M4, and so on. It gives us the R-tree
described in the right chart of the figure. For more details about
R-trees see [9].

We adopt the cited structure but adapting MBR’s and R-trees to
the context of constrained objects in the following sense. Each
spatial object is enclosed into an MBR but the MBR is also
constrained given that the spatial object can be described by
means of constrained coordinates. That is, a spatial object can
be line[(x, 8), (10, 12)], and x can be constrained to belong to
an interval (note that due to safe condition, each coordinate must
be constrained by an equality or a membership to an interval). It
forces to consider constrained MBRs which have the upper-left cor-
ner and lower-right corner also constrained. For instance in the case
line[(x, 8), (10, 12)], and supposing x ∈ [7, 22] it is enclosed by
two MBRs with corners (x, 12) and (10, 8) if x ∈ [7, 10], and
(10, 12) and (x, 8) whenever x ∈ [10, 22] following the criteria
for building MBRs. Now, the building of the R-tree enclosing both
MBRs follows the usual criteria. It is supposed to be achieved in
the constraint store when the CLP-program is compiled.

4.2 Resolution

Now, we will define the resolution rule for our CLP programs. This
rule calls the constraints solver which will be defined by means of
transformation rules.

DEFINITION 4.1. Resolution Given a goal G ≡: −Γ|p1(s̄1),
. . . , pn(s̄n) we define an step of resolution G ⇒ψ G′ as follows.
G′ consists on

: −Γ′|(p1(s̄1), . . . , pi−1(¯si−1),
q1(t̄1), . . . , qr(t̄r), pi+1(¯si+1), . . . , pn(s̄n))ψ

whenever there exist a variant pi(v̄) : −Γ0|q1(t̄1), . . . , qr(t̄r) ∈
P , and a D-substitution ψ = (θ, µ,∆,Ω) such that θ is the m.g.u.
of v̄ and s̄i, and there exists a sequence of transformation steps
Γ ∧ Γ0 ↪→

∗
(µ,∆,Ω) Π

W

Γ′; and G′ consists on fail whenever

• there not exists pi(v̄) : −Γ0|q1(t̄1), . . . , qr(t̄r) ∈ P such that
s̄i and v̄ unify or

• there exists pi(v̄) : −Γ0|q1(t̄1), . . . , qr(t̄r) ∈ P such that
s̄i and v̄ unify with m.g.u. ψ and there exists a sequence of
transformation steps (Γ ∧ Γ0)ψ ↪→

∗
(µ,∆,Ω) fail

This resolution rule is defined in a general way, that is, here
we are not interested in the definition of any concrete strategy
of combination of constraint solving and resolution. The compu-
tations Γ ↪→(µ,∆,Ω) Γ′ and Γ ↪→(µ,∆,Ω) fail are calls to the
constraint solver. These calls consists at the same time on consis-
tence checking and constraint propagation process. If consistence
checking fails then the step of resolution fails. Otherwise, the con-
straint propagation achieves the adding of new constraints in the
constraint store. Let us remark that each rule application can in-
volve several steps of resolution (i.e. several branches of the search
tree) once our constraint solver can generate disjunctions of con-
straints.

DEFINITION 4.2 (Computed Answer). We say that a D-substituti-
on ψ is a computed answer from a goal G iff there exists a sequence
of steps of resolution G ⇒ψ0 G1 ⇒ψ1 G2 · · · ⇒ψn such that
ψ = ψ0 · ψ1 · · · · ψn.

4.3 Constraint Solver

Our constraint solver will be described by means of a set of trans-
formation rules of the form Π

W

CH � Γ ↪→ Π
W

CH ′ � Γ′. Ba-
sically, these transformation rules achieve the consistence checking
and constraint propagation process.

The set CH is a conjunction of simple constraints, called con-
sistence constraints, which should be checked for consistency in
each step of resolution. Initially,CH contains the set of constraints
on NType of the Γ occurring in the goal G. Therefore, initially is
supposed to have CH �Γ\CH . Whenever new constraints are in-
troduced in the application of a rule, the transformation rules allow
the consistence checking of the new CH’s, and achieve constraint
propagation by generating either simpler constraints, or adding new
kind of constraints or solving previously delayed constraints. There
are some constraints which have to be delayed due to non bounded
variables. The transformation process may generate disjunctions of
constraints whenever there are several alternatives.

There are some special kind of constraints which we call con-
straints on candidate objects which can be delayed to be solved
at the end of predicate solving in order to obtain the solved form.
The solving of these constraints on candidate objects, which we
call refinement step, consists on checking the operations defined in
table 5 for pairs of spatial objects. The consistence checking is able
to prune tree branches, but constraint solving on candidate objects
can still fail. We can say that consistence checking definitively dis-
cards branches or fails by using the MBR structure as an approx-
imation to the shape of an spatial object. However, the refinement
step has to complete the solving process applying the operations
over the spatial objects for which there was not found any inconsis-

tence. The efficiency of our constraint solver should be evaluated
in the presence of a massive quantity of constraints.

Finally, and from a practical point of view, our CLP language
could be implemented, and this is our aim, using as host language a
CLP system with a constraint solver over intervals of real numbers.
The reason for that is that the consistence checking process consists
on consistence checking over intervals of real numbers. It will be
explained later.

4.4 Consistence Constraints

The basis of the optimization of our constraint solver is the consis-
tence checking of a conjunction of simple constraints. The consis-
tence constraints have the following form:

• n1 = n2, n1 6= n2, (p1, p2) = (p′1, p
′
2), (p1, p2) 6= (p′1, p

′
2),

n1 ∈ [n2, n3], n1 /∈ [n2, n3], which are constraints on NType;
• (p1, p2) ∈ R and (p1, p2) /∈ R where p1, p2 ∈ NType, and R is

an MBR; which are also equivalent to real interval constraints
once (p1, p2) ∈ R is equivalent to p1 ∈ [R.up.x, R.low.x]∧p2 ∈
[R.up.y, R.low.y], and analogously for (p1, p2) /∈ R; where the
suffixes up and low denote the upper-left corner and lower-right
corner of the MBR R, respectively, and the suffixes x and y

denote the coordinates of such corners in the axis X and Y ,
respectively;

• mbrbound(S, R) where S is from SetSDT, and R is an MBR;
and distbound(PS, n1, n2) where n1 and n2 are from NType

and PS is from SetPSDT. The first one requires the elements of
the set S to be included in R; and the second one requires the
distance for each pair of objects of PS is bounded in [n1, n2].

The consistence checker for the two last kind of constraints
should follows the next rules of constraint propagation:

(P1) Π
W

mbrbound(S, R1) ∧ mbrbound(S, R2) � Γ ↪→
Π

W

mbrbound(S, R3) ∧ R3 = intermbr(R1, R2) � Γ
(P2) Π

W

distbound(PS, n1, n2) ∧ distbound(PS, n3, n4) � Γ ↪→
Π

W

distbound(PS, n5, n6) ∧ n5 = max(n1, n3)∧
n6 = min(n2, n4) � Γ

where intermbr(R1, R2) denotes the intersection of two MBRs
which is trivially an MBR, and max(n1, n2) (resp. min(n3, n4)) de-
notes the maximum (respectively the minimum) of two real num-
bers.

In addition, the constraint solver should be able to propagate
membership constraints to these special constraints in order to
ensure consistence, and it should follow the next rules:

(P3) Π
W

mbrbound(S, R) � O ∈ S ∧ Γ ↪→ Π
W

mbrbound(S, R)∧
O ∈ R � O ∈ S ∧ Γ

(P4) Π
W

distbound(PS, n1, n2)� < O1, O2 >∈ PS ∧ Γ ↪→
Π

W

distbound(PS, n1, n2) ∧ mindmbr(O1.mbr, O2.mbr) =
n3 ∧ n3 ∈ [n1, n2] ∧ maxdmbr(O1.mbr, O2.mbr) = n4∧
n4 ∈ [n1, n2]� < O1, O2 >∈ PS ∧ Γ

where mindmbr(R1 , R2) (resp. maxdmbr(R1 , R2)) denotes the mini-
mum (resp. maximum) distance of two MBR’s, and the suffix O.mbr
denotes the MBR enclosing the object O.

In summary, the consistence checker of these simple constraints
should always check interval constraints.

The failure rule for the consistence checker is as follows:

(FAILURE) Π
W

CH � Γ ↪→ Π

if Π is not empty and CH is inconsistent

Π
W

CH � Γ ↪→ fail

if Π is empty and CH is inconsistent

The first case corresponds with the prune of the search tree, and
the second with a failure branch.

4.5 Transformation Rules

In this subsection we will review the transformation rules, showing
the main cases. First of all, we will summarize the notation used in
the rules:
Notation

1. For objects, we use the suffixes mbr, up and low with the
meaning of the previous section, and using the suffix obj to
refer to the object itself.

2. For sets of objects, the suffix root denotes the root of the R-
tree storing the set of objects, and we use induces i1, . . . , in
for denoting the child of index ij in a internal node of an R-
tree.

3. For set of pairs of objects, the suffixes first and second refer
to the set of objects in the first (resp. second) component of each
pair.

4. For MBRs, we use functions unionmbr, intermbr and diffmbr
for computing the same operations on MBRs.

5. We introduce a new kind of constraints for each operation ob-
taining a set of pairs of objects, of the form: mindtree(m, PS, R1,
R2), maxdtree(m, PS, R1, R2), insidetree(PS, R1, R2), . . . ,
etc, where PS is from SetPSDT, and R1 and R2 are MBRs. The
meaning of the new kind of constraints is a bound (in the form
of MBRs) for the search space for each pair of PS.

6. Finally, we introduce a new kind of constraints for each oper-
ation obtaining a set of objects, of the form: rangetree(S, R,
Win) and rangetree(S, R, Circle), and so on, where R is an
MBR, S is from SetSDT. The meaning of such constraints is a
bound in the form of an MBR for the search space of S.

The transformation rules are shown in tables 6,7 and 8. We have
included the main cases of the transformation rules, the full version
can be found in [1]. With respect to the transformation rules of
equality constraints, they use the suffixes up and low to refer to
the corners of the MBRs enclosing the object. As an example, the
rule (E1) introduces consistence constraints for comparing the two
MBRs of the compared objects. In addition, it uses the suffix obj

to refer to the object itself (in this case the compared objects are
trivially candidates).

With respect to the membership constraints, basically they
introduce consistence constraints for handling the MBRs (resp. R-
trees) enclosing an object (resp. a set of objects) (rule (M1) (resp.
(M2) to (M4))). The most interesting rules of this block are the
rules from (M2) to (M4). They handle the R-tree enclosing a set
of objects. For instance, the rule (M2) starts the search in the tree
root, and the rule (M3) discards the children which do not contain
the MBR enclosing the searched object. It should be checked by
means of the (FAILURE) rule. Finally, rule (M4) adds constraints
for the candidate objects. As an example, we can consider w.r.t the
figure 3:

∅ � p5 ∈ {p1, . . . , p12} ↪→ ∅ � p5 ∈ {p1, . . . , p12}.root ↪→
p5 ∈ {p1, . . . , p12}.root.up ∧ p5 ∈ {p1, . . . , p12}.root.low
�p5 ∈ {p1, . . . , p12}.root.M1

W

p5 ∈ {p1, . . . , p12}.root.up ∧ p5 ∈ {p1, . . . , p12}.root.low
�p5 ∈ {p1, . . . , p12}.root.M2 ↪→ . . .
∅ � p5 ∈ {p1, . . . , p12}.root.M2.M5 ↪→ . . .

With respect to the transformation rules for set constraints,
they use the cited operations for MBRs (as an example see rules
(SE1) and (SE2)).

With respect to metric constraints, they add consistence con-
straints of the form m ∈ [a, b] and distbound(PS, a, b), for each
minimum and maximum distance to be computed. m is a variable
used for computing the minimum (resp. maximum) distance of two
objects (or set of objects) and PS is a variable for storing pairs of
objects at the minimum (resp. maximum) distance. In the refine-

Table 6. Equality and Membership Transformation Rules

(E1) Π
W

CH � (O1 = O2 ∧ Γ) ↪→ Π
W

(O1.up = O2.up ∧ O1.low = O2.low ∧ CH)
�(O1.obj = O2.obj ∧ Γ)

(M1) Π
W

CH � ((p1, p2) ∈ O ∧ Γ) ↪→ Π
W

((p1, p2) ∈ O.mbr ∧ CH) � ((p1, p2) ∈ O.obj ∧ Γ)

(M2) Π
W

CH � (O ∈ S ∧ Γ) ↪→ Π
W

CH � (O ∈ S.root ∧ Γ)

(M3) Π
W

CH � (O ∈ R ∧ Γ) ↪→ Π
W

j=s1,...,sk
((O.up ∈ R ∧ O.low ∈ R ∧ CH) � (O ∈ R.j ∧ Γ))

if R has subtrees s1, . . . , sk

(M4) Π
W

CH � (O ∈ R ∧ Γ) ↪→ Π
W

(O.up ∈ R ∧ O.low ∈ R ∧ CH) � (O.obj = R.obj ∧ Γ)
if R is a leaf

Table 7. Set and Metric Transformation Rules

(SE1) Π
W

CH � Γ[O1 ∪ O2] ↪→ Π
W

mbrbound(S, unionmbr(O1.mbr, O2.mbr)) ∧ CH � Γ[S] ∧ S = O1.obj ∪ O2.obj

(SE2) Π
W

CH � Γ[S1 ∪ S2] ↪→ Π
W

mbrbound(S, unionmbr(S1.root, S2.root)) ∧ CH � Γ[S] ∧ S = S1.root ∪ S2.root

(ME1) Π
W

CH � Γ[mindist(O1 , O2)] ↪→
Π

W

m ∈ [mindmbr(O1.mbr, O2.mbr), maxdmbr(O1.mbr, O2.mbr)] ∧ CH � Γ[m] ∧ m = mindist(O1 .obj, O2.obj)

(ME2) Π
W

CH � Γ[pmindist(O1 , O2)] ↪→
Π

W

distbound(PS, mindmbr(O1.mbr, O2.mbr), maxdmbr(O1.mbr, O2.mbr)) ∧ CH � Γ[PS] ∧ PS = pmindist(O1 .obj, O2.obj)

(ME3) Π
W

CH � Γ[mindist(S1, S2)] ↪→
Π

W

m ∈ [mindmbr(S1.root, S2.root), maxdmbr(S1.root, S2.root)]∧
CH � (Γ[m] ∧ mindtree(m, PS, S1.root, S2.root))

(ME4) Π
W

m ∈ [a, b] ∧ CH � mindtree(m, PS, R1, R2) ∧ Γ ↪→ Π
W

m ∈ [mindmbr(R1, R2), b]
∧CH � ∧j=i1,...,in,k=l1,...,lt

mindtree(m, PS, R1.j, R2.k) ∧ Γ
if R1 has subtrees ij and R2 has subtrees lk and a >= mindmbr(R1, R2)

(ME5) Π
W

m ∈ [a, b] ∧ CH � mindtree(m, PS, R1, R2) ∧ Γ ↪→ Π
W

m ∈ [mindmbr(R1, R2), b]
∧CH � m = mindist(PS) ∧ PS = {{< R1.obj, R2.obj >}} ∪ PS1 ∧ Γ[PS/PS1]
if R1 and R2 are leaves and a >= mindmbr(R1, R2) and PS occurs in Γ

(ME6) Π
W

m ∈ [a, b] ∧ CH � mindtree(m, PS, R1, R2) ∧ Γ ↪→ Π
W

m ∈ [a, b] ∧ CH � Γ
if a < mindmbr(R1, R2)

Table 8. Topological and Structural Transformation Rules

(T1) Π
W

CH � Γ[O1 inside O2] ↪→
Π

W

O1.up ∈ O2.mbr ∧ O1.low ∈ O2.mbr ∧ CH � Γ[O1.obj inside O2.obj]

(T2) Π
W

CH � Γ[S1 inside S2] ↪→ Π
W

(mbrbound(PS.first, S1.root)∧
mbrbound(PS.second, S2.root) ∧ CH) � (Γ[PS] ∧ insidetree(PS, S1.root, S2.root))

(T3) Π
W

mbrbound(PS.first, R1) ∧ mbrbound(PS.second,R2) ∧ CH � insidetree(PS, R1, R2)
∧Γ ↪→ Π

W

∧j=i1,...,in,k=l1,...,lt
mrbbound(PS.first, R1.j) ∧ mbrbound(PS.second, R2.k)

∧CH � ∧j=i1,...,in,k=l1,...,lt
insidetree(PS, R1.j, R2.k) ∧ Γ)

if R1 has subtrees i1, . . . , in and R2 has subtrees l1, . . . , lt, and R1, R2 intersect

(T4) Π
W

CH � insidetree(PS, R1, R2) ∧ Γ ↪→
Π

W

CH � PS = R1.obj inside R2.obj ∪ PS1 ∧ Γ[PS/PS1]
if R1 and R2 are leaves and R1, R2 intersect

(T5) Π
W

CH � insidetree(PS, R1, R2) ∧ Γ ↪→ Π
W

CH � Γ
if R1, R2 do not intersect and PS occurs in Γ

(S1) Π
W

CH � Γ[area(O)] ↪→
Π

W

m ∈ [0, (O.up.x − O.low.x) ∗ (O.up.y − O.low.y)] ∧ CH � Γ[m] ∧ m = area(O.obj)

ment step the bounds a and b should be updated for candidate ob-
jects. These constraints represent the lower and upper bounds of
the distance of two objects and sets of pairs of points or objects,
respectively. In such a way, they are used for the pruning of the
search for the minimum distance (and pairs of points or objects at
the minimum distance). Similarly for maximum distances. In addi-
tion, the use of the new kind of constraints mindtree, pmindtree,
etc, allows the handling of each R-tree, and enables the decompo-
sition of an MBR into its children. For instance, rules (ME1) and
(ME2) compute these bounds for a couple of objects, and the rule
(ME3) starts the search in the tree root, and the rules from (ME4)
to (ME6) update the lower bounds, for the case of minimum dis-
tance of two sets of objects. Finally, (ME5) obtains the candidate
objects. The rules for pairs of points and objects at the minimum
distance are similar. The case of maximum distance is also similar,
updating the upper bound.

With respect to the topological constraints, we will show the
case of inside, and the rest of cases are similar. The technique
for solving such constraints is based on the use of the consistence
constraint mbrbound(S, R), which keeps the bound in the form
of an MBR for the elements of S. In this case, a new constraint
insidetree allows the handling of the R-tree (rules (T1) to (T5)).
Finally, the structural constraints take into account the lower and
upper bounds of area, length and perimeter operations of an object
and a set of objects, using also MBRs and R-trees (as an example
see rule (S1)).

4.6 Delayed Constraints

As was commented some constraints have to be delayed up to
the variables are bounded. Variables can be bounded when a new
rule is applied. Basically, the operations on (sets of) (pairs) of
spatial objects defined in the paragraph Notation in the items (1)
to (5), such as mbr, up, low, and so on need to be refereed to an
spatial object, however whenever they are applied to a variable, the
constraint that uses them should be delayed up to the variable is
bound to the spatial object. And the same can be said for sets of
spatial objects and sets of pairs of spatial objects.

4.7 Refinement Step

The refinement step consists of the solving of the constraints over
candidate objects of Γ. For solving these constraints now we should
take into account the candidate objects (i.e. figures with holes)
stored in each MBR computed with the transformation rules, and
apply the operations on table 5. This refinement step is supposed to
be applied in any step of resolution, and it allows to obtain partially
solved forms, in particular, D-valuations representing solutions of
the solved forms. In practice, these solutions may not be computed
and the answer can be shown as a solved form. The refinement step
consists on a basic rule:

(REFINEMENT) CH � Γ ∧ Op(O1.obj, . . . , On.obj)
↪→(µ,∆,Ω) (CH � Γ)Ω∆µ

if [|Op(O1.obj, . . . , On.obj)|](µ,∆,Ω) is true

Finally, we conclude with a result of soundness and complete-
ness of our operational semantics.

THEOREM 4.1. Soundness and Completeness. For every goal G
we have that T∞

P (∅) |= Gψ′ for a D-valuation ψ′ iff there exists a
computed answer ψ such ψ′ = ψ · λ.

5. Conclusions and Future Work
In this paper we have presented an instance of CLP for sets of
spatial objects. We have defined its fixed point and operational se-
mantics. The operational semantics is based on a constraint solver
for which a consistence checking and constraint propagation tech-
niques have been presented. As future work we plan to implement

this instance in a CLP system like CIAO o SICSTUS. In the pre-
sented form there is many work to do in order to make an efficient
implementation of our constraint solving process. We hope the pro-
totype would allow to introduce and test improvements.

Acknowledgments
This work has been partially supported by the Spanish project of
the Ministry of Science and Technology, “INDALOG” TIC2002-
03968 under FEDER funds.

References
[1] J. M. Almendros-Jimenez and A. Corral. Solving constraints on

sets of spatial objects, available in http://www.ual.es/~jalmen/
padl05tr.ps. Technical report, Dpto. de Lenguajes y Computaci ón,
Universidad de Almer ı́a, 2004.

[2] J. M. Almendros-Jimenez and A. Corral. Solving constraints on
sets of spatial objects. In Proc. of Practical Aspects of Declarative
Languages, volume 3350, pages 158–173. LNCS Springer, 2005.

[3] K. R. Apt. Principles of Constraint Programming. Cambridge
University Press, 2003.

[4] A. Belussi, E. Bertino, and B. Catania. Manipulating Spatial Data in
Constraint Databases. In Proceeding of SSD’97 Conference, LNCS
1262, pages 115–141. Springer, 1997.

[5] A. Belussi, E. Bertino, and B. Catania. An Extended Algebra for
Constraint Databases. IEEE Transactions on Knowledge and Data
Engineering, TKDE, 10(5):686–705, 1998.

[6] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lopez-Garcia,
and G. Puebla. The ciao system. reference manual (v1.10). num.
clip3/97.1.10(04). Technical report, School of Computer Science,
Technical University of Madrid (UPM), 2004.

[7] A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Shen, and
M. G. Wallace. Eclipse: An introduction. Technical report, IC-Parc,
Imperial College London, Technical Report IC-Parc-03-1, 2003.

[8] P. Codognet and D. Diaz. A Simple and Efficient Boolean Solver for
Constraint Logic Programming. Journal of Automated Reasoning,
17(1):97–129, 1996.

[9] A. Guttman. Rtrees: A Dynamic Index Structure for Spatial Searching.
In Proceedings of ACM SIGMOD Conference, pages 47–57, 1984.

[10] J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey.
Journal of Logic Programming, JLP, 19,20:503–582, 1994.

[11] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Beyond Finite
Domains. In Proceedings of Principles and Practice on Constraint
Programming, pages 86–94, 1994.

[12] G. M. Kuper, L. Libkin, and J. Paredaens, editors. Constraint
Databases. Springer, 2000.

[13] K. Marriot and P. J. Stuckey. Programming with Constraints: an
Introduction. MIT Press, 1998.

[14] P. Z. Revesz. Safe Query Languages for Constraint Databases. ACM
TODS, 23(1):58–99, 1998.

[15] P. Rigaux, M. Scholl, L. Segoufin, and S. Grumbach. Building a
Constraint-based Spatial Database System: Model, Languages, and
Implementation. Information Systems, 28(6):563–595, 2003.

[16] E. Schwalb and L. Vila. Temporal Constraints: A Survey. Constraints,
3(2/3):129–149, 1998.

