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Abstract. This paper presents an encoding of the XML query lan-
guage XQuery in the functional-logic language T OY. The encoding is
based on the definition of for-let-where-return constructors by means
of T OY functions, and uses the recently proposed XPath implementa-
tion for this language as a basis. XQuery expressions can be executed
in T OY obtaining sequences of XML elements as answers. Our setting
exploits the non-deterministic nature of T OY by retrieving the elements
of the XML tree once at a time when necessary. We show that one of the
advantages of using a rewriting-based language for implementing XQuery
is that it can be used for optimizing XQuery expressions by query rewrit-
ing. With this aim, XQuery expressions are converted into higher order
patterns that can be analyzed and modified by T OY functions.

Keywords: Functional-Logic Programming, Non-Deterministic Func-
tions, XQuery, Higher-Order Patterns.

1 Introduction

In the last few years the eXtensible Markup Language XML [33] has become a
standard for the exchange of semistructured data. Thus, querying XML docu-
ments from different languages has become a convenient feature. XQuery [35,37]
has been defined as a query language for finding and extracting information
from XML documents. It extends XPath [34], a domain-specific language that
has become part of general-purpose languages. Recently, in [10], we have pro-
posed an implementation of XPath in the functional-logic language T OY [22].
The implementation is based on the definition of XPath constructors by means
of T OY functions. As well, XML documents are represented in T OY by means
of terms, and the basic constructors of XPath: child, self, descendant, etc.
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are defined as functions that apply to XML terms. The goal of this paper is to
extend [10] to XQuery.

The existing XQuery implementations either use functional programming or
Relational Database Management Systems (RDBMS’s). In the first case, the
Galax implementation [23] encodes XQuery into Objective Caml, in particular,
encodes XPath. Since XQuery is a functional language (with some extensions)
the main encoding is related with the type system for allowing XML documents
and XPath expressions to occur in a functional expression. With this aim, a spe-
cific type system for handling XML tags, the hierarchical structure of XML, and
sequences of XML items is required. In addition, XPath expressions can be im-
plemented from this representation. There are also proposals for new languages
based on functional programming rather than implementing XPath and XQuery.
This is the case of XDuce [19] and CDuce [5,6], which are languages for XML
data processing, using regular expression pattern matching over XML trees and
subtyping as basic mechanism. There are also proposals around Haskell for han-
dling XML documents, such as HaXML and UUXML [31,4,36,30]. XML types
are encoded with Haskell’s type classes providing a Haskell library in which XML
types are encoded as algebraic datatypes. HXQ [14] is a translator from XQuery
to embedded Haskell code, using the Haskell templates. HXQ stores XML doc-
uments in a relational database, and translates queries into SQL queries.

This is also followed in some RDBMS XQuery implementations: XML doc-
uments are encoded with relational tables, and XPath and XQuery with SQL.
The most relevant contribution in this research line is MonetDB/XQuery [7]. It
consists of the Pathfinder XQuery compiler [8] on top of the MonetDB RDBMS,
although Pathfinder can be deployed on top of any RDBMS. MonetDB/XQuery
encodes the XML tree structure in a relational table following a pre/post order
traversal of the tree (with some variant). XPath can be implemented from such
table-based representation, and XQuery by encoding flwor expressions into the
relational algebra, extended with the so-called loop-lifted staircase join.

There are also proposals based on logic programming. In most cases, new lan-
guages for XML processing are proposed. The Xcerpt project [27,9] proposes a
pattern and rule-based query language for XML documents, using the so-called
query terms including logic variables for the retrieval of XML elements. Another
contribution to XML processing is the language XPathLog (integrated in the the
Lopix system) [24] which is a Datalog-style extension for XPath with variable
bindings. XCentric [13] is an approach for representing and handling XML doc-
uments by logic programs, by considering terms with functions of flexible arity
and regular types. XPathL [26] is a logic language based on rules for XML pro-
cessing including a specific predicate for handling XPath expressions in Datalog
programs. FNPath [29] is also a proposal for using Prolog as a query language for
XML documents. It maps XML documents to a Prolog Document Object Model
(DOM), which can either consist of facts (graph notation) or a term structure
(field notation). FNPath can evaluate XPath expressions based on that DOM.
[2,3] aim to implement XQuery by means of logic programming, providing two
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alternatives: a top-down and a bottom-up approaches (the latter in the line of
Datalog programs). Finally, some well-known Prolog implementations include
libraries for loading XML documents, such as SWI-Prolog [38] and Ciao [12].

In the field of functional-logic languages, [18] proposes a rule-based language
for processing semistructured data that is implemented and embedded in the
functional logic language Curry [17]. The framework is based on providing oper-
ations to describe partial matchings in the data and exploits functional patterns
and set functions for the programming tasks.

In functional and functional-logic languages, a different approach is possi-
ble: XPath queries can be represented by higher-order functions connected by
higher-order combinators. Using this approach, an XPath query becomes at the
same time implementation (code) and representation (data term). This is the
approach we have followed in our previous work [10]. In the case of XQuery, for-
let-where-return constructors can be encoded in T OY , which uses the XPath
query language as a basis. XQuery expressions can be encoded by means of
(first-order) functions. However, we show that we can also consider XQuery ex-
pressions as higher order patterns, in order to manipulate XQuery programs by
means of T OY . For instance, we have studied how to transform XQuery expres-
sions into T OY patterns in order to optimize them. In this paper we follow this
idea, which has been used in the past, for instance for defining parsers in func-
tional and functional-logic languages [11,20]. A completely declarative proposal
for integrating part of XQuery in T OY can be found in [1], which restricts it-
self to the completely declarative features of the language. This implies that the
subset of XQuery considered is much narrower than the framework presented
here. The advantage of restricting to the purely declarative view is that proofs
of correctness and completeness are provided. In this work we take a different
point of view, trying to define a more general XQuery framework although using
non-purely declarative features as the (meta-)primitive collect. Another differ-
ence of this work is the use of higher-order patterns for rewriting queries, which
was not available in [1].

The specific characteristics of functional-logic languages match perfectly the
nature of XQuery queries:

– Non-deterministic functions are used to nicely represent the evaluation of
an XPath/XQuery query, which consists of fragments of the input XML
document. In addition, the for constructor of XQuery can be defined with
non-deterministic behavior.

– Logic variables are employed for instance when obtaining the contents of
XPath text nodes, and for solving nested XQuery expressions, capturing the
non-deterministic behavior of inner for and XPath expressions.

– By defining rules with higher-order patterns, XPath/XQuery queries become
truly first-class citizens in our setting. In the case of XQuery, this allows us
to rewrite queries in order to be optimized. XPath can also be optimized
(see [10] for more details).

The rest of the paper is organized as follows. Section 2 briefly introduces the
XPath subset presented in [10]. Section 3 defines the encoding of XQuery in
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T OY . Section 4 shows how to use T OY for the optimization of XQuery. Finally,
Section 5 presents some conclusions.

2 XPath in T OY

This section introduces the functional-logic language T OY [22] and the subset
of XPath that we intend to integrate with T OY , omitting all the feaures of
XPath that are supported by T OY but not used in this paper, such as filters,
abbreviations, attributes and preprocessing of reverse axes. See [10] for a more
detailed introduction to XPath in T OY .

2.1 The Functional-Logic Language T OY
All the examples in this paper are written in the concrete syntax of the lazy
functional-logic language T OY [22], but most of the code can be easily adapted
to other similar languages as Curry [17]. T OY is a lazy functional-logic lan-
guage. A T OY program is composed of data type declarations, type alias, infix
operators, function type declarations and defining rules for functions symbols.
The syntax is similar to the functional language Haskell, except for the capital-
ization, which follows the approach of Prolog (variables start by uppercase, and
other symbols by lowercase1). Each rule for a function f has the form:

f t1 . . . tn
︸ ︷︷ ︸

left-hand side

= r
︸︷︷︸

right-hand side

⇐ e1, . . . , ek
︸ ︷︷ ︸

condition

where s1 = u1, . . . , sm = um
︸ ︷︷ ︸

local definitions

where ui and r are expressions (that can contain new extra variables) and ti,
si are patterns. The overall idea is that a function call (f e1 . . . en) returns an
instance rθ of r, if:

– Each ei can be reduced to some pattern ai, i = 1 . . . n, such that (f t1 . . . tn)
and (f a1 . . . an) are unifiable with most general unifier θ, and

– uiθ can be reduced to pattern siθ for each i = 1 . . .m.

Infix operators are also allowed as particular case of program functions. Consider
for instance the definitions:

infixr 30 /\ infixr 30 \/ infixr 45 ?
false /\ X = false true \/ X = true X ? _Y = X
true /\ X = X false \/ X = X _X ? Y = Y

The /\ and \/ operators represent the standard conjunction and disjunction,
respectively, while ? represents the non-deterministic choice. For instance the
infix declaration infixr 45 ? indicates that ? is an infix operator that associates
to the right (the r in infixr) and that its priority is 35. The priority is used
to assume precedences in the case of expressions involving different operators.
Computations in T OY start when the user inputs some goal as
1 Also, only variables are allowed to start that way. If another identifier has to start

with uppercase or underscore, it must be delimited between single quotes.
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Toy> 1 ? 2 ? 3 ? 4 == R

This goal asks T OY for values of the logical variable R that make true the
(strict) equality 1 ? 2 ? 3 ? 4 == R. This goal yields four different answers
{R �→ 1 }, {R �→ 2 }, {R �→ 3 }, and {R �→ 4 }. The next function extends
the choice operator to lists: member [X|Xs] = X ? member Xs. For instance,
the goal member [1,2,3,4] == R has the same four answers that were obtained
by trying 1 ? 2 ? 3 ? 4 == R.

T OY is a typed language. Types do not need to be annotated explicitly by
the user, they are inferred by the system, which rejects ill-typed expressions.
However, function type declarations can also be made explicit by the user, which
improves the clarity of the program and helps to detect some bugs at compile
time. For instance, a function type declaration is: member :: [A] -> A which
indicates that member takes a list of elements of type A, and returns a value
which must be also of type A. As usual in functional programming languages,
T OY allows partial applications in expressions and higher order parameters like
apply F X = F X. Consider for instance the function that returns the n-th value
in a list:

nth :: int -> [A] -> A
nth N [X|Xs] = if N==1 then X else nth (N-1) Xs

This function has program arity 2, which means that the program rule is ap-
plied when it receives nth 1 == R1, R1 ["hello","friends"] == R2 and
produces the answer { R1 �→ (nth 1), R2 �→ "hello" }. In this solution, R1
is bound to the partial application nth 1. Observe that R1 has type ([A] ->
A), and thus it is a higher-order variable. Applying R1 to a list of strings like in
the second part of the goal R1 ["hello","friends"] == R2 ’triggers’ the use
of the program rule for nth. A particularity of T OY is that partial applications
with pattern parameters are also valid patterns. They are called higher-order pat-
terns. For instance, a program rule like foo (apply member) = true is valid,
although foo (apply member []) = true is not because apply member [] is
a reducible expression and not a valid pattern. For instance, one could define a
function like: first (nth N) = N==1 because nth N is a higher-order pattern.
However, a program rule like: foo (nth 1 [2]) = true is not valid, because
(nth 1 [2]) is reducible and thus it is not a valid pattern. Higher-order vari-
ables and patterns play an important role in our setting.

2.2 Representing XPath Queries

Data type declarations and type alias are useful for representing XML documents
in T OY , as illustrated next:

data xmlNode = txt string
| comment string
| xmlTag string [xmlAttribute] [xmlNode]

data xmlAttribute = att string string
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type xml = xmlNode
type xPath = xml -> xml

Data type xmlNode represents nodes in a simple XML document. It distinguishes
three types of nodes: texts, comments, and tags (element nodes), each one rep-
resented by a suitable data constructor and with arguments representing the
information about the node. For instance, constructor xmlTag includes the tag
name (an argument of type string) followed by a list of attributes, and finally a
list of child nodes. Data type xmlAttribute contains the name of the attribute
and its value (both of type string). Type alias xml is a renaming of the data
type xmlNode. Finally, type alias xPath is defined as a function from nodes to
nodes, and is the type of XPath constructors. Of course, this list is not ex-
haustive, since it misses several types of XML nodes, but it is enough for this
presentation. Notice that in T OY we do not still consider the adequacy of the
document to its underlying Schema definition [32]. This task has been addressed
in functional programming defining regular expression types [30]. However, we
assume well-formed input XML documents. In order to import XML documents,
the T OY primitive load_xml_file loads an XML file returning its representa-
tion as a value of type xmlNode. Figure 1 shows an example of XML file and its
representation in T OY.

Typically, XPath expressions return several fragments of the XML document.
Thus, the expected type in T OY for xPath could be type xPath = xml ->
[xml] meaning that a list or sequence of results is obtained. This is the approach
considered in [2] and also the usual in functional programming [16]. However,

<?xml version=’1.0’?>
<food>
<item type="fruit">

<name>watermelon</name>
<price>32</price>

</item>
<item type="fruit">

<name>oranges</name>
<variety>navel</variety>
<price>74</price>

</item>
<item type="vegetable">
<name>onions</name>
<price>55</price>
</item>
<item type="fruit">
<name>strawberries</name>
<variety>alpine</variety>
<price>210</price>
</item>
</food>

xmlTag "root" [att "version" "1.0"] [
xmlTag "food" [] [

xmlTag "item" [att "type" "fruit"] [
xmlTag "name" [] [txt "watermelon"],
xmlTag "price" [] [txt "32"]

],
xmlTag "item" [att "type" "fruit"] [
xmlTag "name" [] [txt "oranges"],
xmlTag "variety" [] [txt "navel"],
xmlTag "price" [] [txt "74"]

],
xmlTag "item" [att "type" "vegetable"][
xmlTag "name" [] [txt "onions"],
xmlTag "price" [] [txt "55"]

],
xmlTag "item" [att "type" "fruit"] [
xmlTag "name" [] [txt "strawberries"],
xmlTag "variety" [] [txt "alpine"],
xmlTag "price" [] [txt "210"]

]
]]

Fig. 1. XML example (left) and its representation in T OY (right)
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in our case we take advantage of the non-deterministic nature of our language,
returning each result individually. We define an XPath expression as a function
taking a (fragment of) XML as input and returning a (fragment of) XML as its
result: type xPath = xml -> xml. In order to apply an XPath expression to a
particular document, we use the following infix operator definition:

(<--) :: string -> xPath -> xml S <-- Q = Q (load_xml_file S)

The input arguments of this operator are a string S representing the file name and
an XPath query Q. The function applies Q to the XML document contained in file
S. This operator plays in T OY the role of doc in XPath. The XPath combinators
/ and :: which correspond to the connection between steps and between axis
and tests, respectively, are defined in T OY as function composition:

infixr 55 .::. infixr 40 ./.
(.::.) :: xPath -> xPath -> xPath (./.) :: xPath -> xPath -> xPath
(F .::. G) X = G (F X) (F ./. G) X = G (F X)

We use the function operator names .::. and ./. because :: and / are already
defined in T OY . Also notice that their definitions are the same. Indeed, we could
use a single operator for representing both combinators, but we decided to do this
way for maintaining a similar syntax for XPath practitioners, more accustomed
to use such symbols. In addition, we do not check for the “appropriate" use
of such operators and either rely on the provided automatic translation by the
parser or left to the user. The variable X represents the input XML fragment
(the context node). The rules specify how the combinator applies the first XPath
expression (F) followed by the second one (G). Figure 2 shows the T OY definition
of XPath main axes and tests. node. In our setting, it corresponds simply to the
identity function. A more interesting axis is child, which returns, using the non-
deterministic function member, all the children of the context node. Observe that
in XML only element nodes have children, and that in the T OY representation
these nodes correspond to terms rooted by constructor xmlTag. Once child has
been defined, descendant and descendant-or-self are just generalizations.
The first rule for this function specifies that child must be used once, while
the second rule corresponds to two or more applications of child. In this rule,

self,child,descendant :: xPath
descendant_or_self :: xPath
self X = X
child (tag _ _ L) = member L
descendant X = child X
descendant X = if child X == Y

then descendant Y
descendant_or_self =

self ? descendant

nodeT,elem :: xPath
nameT,textT,commentT::string->xPath
nodeT X = X
nameT S (xmlTag S Att L) =

xmlTag S Att L
textT S (txt S) = txt S
commentT S (comment S) = comment S
elem = nameT _

Fig. 2. XPath axes and tests in T OY
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the if statement is employed to ensure that child succeeds when applied to
the input XML fragment, thus avoiding possibly infinite recursive calls. Finally,
the definition of axis descendant-or-self is straightforward. Observe that the
XML input argument is not necessary in this natural definition. With respect
to test nodes, the first test defined in Figure 2 is nodeT, which corresponds to
node() in the usual XPath syntax. This test is simply the identity. For instance,
here is the XPath expression that returns all the nodes in an XML document,
together with its T OY equivalent:

XPath → doc("food.xml")/descendant-or-self::node()
T OY → ("food.xml" <– descendant_or_self.::.nodeT)==R

The only difference is that the T OY expression returns one result at a time in
the variable R, asking the user if more results are needed. If the user wishes to
obtain all the solutions at a time, as usual in XPath evaluators, then it is enough
to use the primitive collect. For instance, the answer to the T OY goal:

Toy> collect ("food.xml" <-- descendant_or_self.::.nodeT) == R

produces a single answer, with R instantiated to a list whose elements are the
nodes in "food.xml". XPath abbreviated syntax allows the programmer to omit
the axis child:: from a location step when it is followed by a name. Thus, the
query child::food/child::price/child::item simply food/price/item. In
T OY we cannot do that directly because we are in a typed language and the
combinator ./. expects xPath expressions and not strings. However, we can
introduce a similar abbreviation by defining new unitary operators name (and
similarly text), which transform strings into XPath expressions:

name :: string -> xPath
name S = child.::.(nameT S)

So, we can write in T OY name "food"./.name "item"./.name "price".
Other tests as nameT and textT select fragments of the XML input, which

can be returned in a logical variable, as in:

XPath → child::food/child::item/child::price/child::text()
T OY → child.::.nameT "food"./.child.::.nameT "item" ./.

child.::.nameT "price"./.child.::.textT P

The logic variable P obtains the prices contained in the example document.
Another XPath useful abbreviation is // which stands for the unabbreviated
expression /descendant-or-self::node()/. In T OY , we can define:

infixr 30 .//.
(.//.) :: xPath -> xPath -> xPath
A .//. B = append A (descendant_or_self .::. nodeT ./. B)
append :: xPath -> xPath -> xPath
append (A.::.B) C = (A.::.B) ./. C
append (X ./.Y) C = X ./. (append Y C)
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Notice that a new function append is used for concatenating XPath expressions.
This function is analogous to the well-known append for lists, but defined over
xPath terms. This is our first example of the usefulness of higher-order patterns
since for instance pattern (A.::.B) has type xPath, i.e., xml -> xml.

3 XQuery in T OY

Now, we are in a position to define the proposed extension to XQuery. Firstly,
the subset of XQuery expressions handled in our setting is presented (XQuery
is a richer language than the fragment presented here):

XQuery ::= XPath | $Var | XQuery/XPath∗ |
let $Var := XQuery [where BXQuery ] return XQuery |
for $Var in XQuery [where BXQuery ] return XQuery |
<tag> XQuery < /tag>

BXQuery ::= XQuery | XQuery=XQuery
Basically, the XQuery fragment handled in T OY allows building new XML doc-
uments employing new tags, and the traversal of XML documents by means of
the for construction. XQuery variables are used in for and let expressions and
can occur in the built documents and XPath expressions. It is worth observing
that XPath can be applied to XQuery expressions, that is, for instance, XPath
can be applied to the result of a for expression. Therefore, such XPath expres-
sions are not rooted by documents (they are denoted by XPath∗). In order to
encode XQuery in T OY we define a new type:

type xQuery = [xml]

In Section 2, XPath has been represented as functions from xml nodes to
xml nodes. However, XQuery expressions are defined as sequences of xml nodes
represented in T OY by lists. This does not imply that our approach returns the
answers enclosed in lists, it still uses non-determinism for evaluating for and
XPath expressions. We define functions for representing for-let-where-return
expressions as follows. Firstly, let and for expressions are defined as:

xLet :: xQuery -> xQuery -> xQuery
xLet X [Y] = if X == collect Y then X
xLet X (X1:X2:L) = if X == (X1:X2:L) then X

xFor :: xQuery -> xQuery -> xQuery
xFor X [Y] = if X == [Y] then X
xFor X (X1:X2:L) = if X == [member (X1:X2:L)] then X

xLet uses collect for capturing the elements of Y in a list, whereas xFor
retrieves non deterministically the elements of Expr in unitary lists. It fits well,
for instance, when Y is an XPath expression in T OY. The definition of for relies
on the non-deterministic function member defined in Section 2. Now T OY goals
like xFor X ("food.xml" <$– name "food" ./. name "item")==R or xLet X
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("food.xml" <$– name "food" ./. name "item")==R can be tried. Let us re-
mark that XPath expressions have been modified in XQuery as follows. A new
operator <$– is defined in terms of <–:

infixr 35 <$--
(<$--) :: string -> xPath -> xQuery
(<$--) Doc Path = [(<--) Doc Path]

The function <$– returns (non deterministically) unitary lists with the ele-
ments of the given document in the corresponding path. Therefore, XPath and
for expressions have the same behavior in the T OY implementation of XQuery.
In other words, (<$–) serves for type conversion from XPath to XQuery. Now,
we can define where and return as follows:

infixr 35 ‘xWhere‘
(‘xWhere‘) :: xQuery -> bool -> xQuery
(‘xWhere‘) X Y = if Y then X

infixr 35 ‘xReturn‘
(‘xReturn‘) :: xQuery -> xQuery -> xQuery
(‘xReturn‘) X Y = if X == _ then Y

The definition of xWhere is straightforward: the query X is returned if the con-
dition Y can be satisfied. The if statement in xReturn forces the evaluation of
X. The anonymous variable (_) can be read as if the query X does not fail, then
return Y. With these definitions, we can simulate many XQuery expressions in
T OY . However, there are two elements still to be added. XPath expressions can
now be rooted by XQuery expressions. Thus, we add a new function:

infixr 35 <$
(<$) :: xQuery -> xPath -> xQuery
(<$) [Y] Path = [Path Y]
(<$) (X:Y:L) Path = map Path (X:Y:L)

The first argument is an XPath variable or, more generally, an XQuery expres-
sion. The XPath expression represented by variable Path is applied to all the
values produced by the XQuery expression. According to the commented behav-
ior, XQuery expressions can be unitary lists (for’s and XPath’s) and non-unitary
lists (let’s). The xmlTag constructor is also converted into a function xmlTagX:

xmlTagX :: string -> [xmlAttribute] -> xQuery -> xQuery
xmlTagX Name Attributes [Expr] =

if Y == collect Expr then [xmlTag Name Attributes Y]
xmlTagX Name Attributes (X:Y:L) = [xmlTag Name Attributes (X:Y:L)]

Basically, this conversion is required to apply collect when either a for or
an XPath expression provides the elements enclosed in an XML tag. With the
previous definitions, T OY accepts the following query:
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R == xmlTagX "names" []
(xLet X ("food.xml" <$-- name "food")
‘xReturn‘
xmlTagX "result" [] (X <$ (name "item"./.name "name")))

which simulates the query:

<names>
let $x:=doc("food.xml")/food return
<result> { $x/item/name } </result>
</names>

and outcomes the following answer:

{R -> [xmlTag "names" []
[xmlTag "result" [] [
xmlTag "name" [] [xmlText "watermelon" ],
xmlTag "name" [] [xmlText "oranges" ],
xmlTag "name" [] [xmlText "onions" ],
xmlTag "name" [] [xmlText "strawberries" ]]]] }

It is worth noticing that T OY shows not only the binding for R, but also
for the variable X. If we are interested in the query without the values of the
variables, we can introduce a function containing the code:

query = xmlTagX "names" []
(xLet X ("food.xml" <$-- name "food")
‘xReturn‘
xmlTagX "result" [] (X <$ (name "item"./.name "name")))

and try the goal query == R to get the same result. In the case of for expres-
sions, we can write:

query2 = xFor Y
(xFor X ("food.xml" <$-- name "food")

‘xReturn‘ (X <$ (name "item" ./. name "name")))
‘xReturn‘ Y

which simulates the following query:

for $Y in
(for $X in doc("food.xml")/food return $X/item/name)
return $Y

The following T OY query returns four answers, once at a time, due to the use
of non-determinism in the for expression:

Toy> query2== X
{ X -> [xmlTag "name" [] [xmlText "watermelon"]] }
{ X -> [xmlTag "name" [] [xmlText "oranges"]] }
{ X -> [xmlTag "name" [] [xmlText "onions"]] }
{ X -> [xmlTag "name" [] [xmlText "strawberries"]] }
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4 XQuery Optimization in T OY

In this section we present one of the advantages of using T OY for running
XQuery expressions. In [10] we have shown that XPath queries can be prepro-
cessed by replacing the reverse axes by predicate filters including forward axes,
as shown in [25]. In the case of XQuery, one of the optimizations to be achieved
is to avoid XPath expressions at outermost positions. Here is an example of
optimization. Consider the following query:

exam = xFor X
(xFor Y ("food.xml" <$-- name "food" ./. name "item")
‘xReturn‘
(xmlTagX "elem" []

(xFor Z (Y <$ name "name")
‘xReturn‘ (xmlTagX "ids" [] Z))))

‘xReturn‘
(X <$ ((name "ids") ./. (name "name")))

In such a query, (X <$ ((name "ids") ./. (name "name")) is an XPath
expression applied to an XML term constructed by the same query. By remov-
ing outermost XPath expressions, we can optimize XQuery expressions. In gen-
eral, a place for optimization are nested XQuery expressions [21,15]. In our case,
we argue that XPath can be statically applied to XQuery expressions. The op-
timization comes from the fact that unnecessary XML terms can be built at
run-time, and that removing them improves memory consumption. We observe
in the previous query that "elem" and "ids" tags are useless, once we retrieve
"name" from the original file. Therefore, the previous query can be rewritten
into a more simpler and equivalent one:

examo = ("food.xml" <$-- name "food"./.name "item"./.name "name")

4.1 XQuery as Higher Order Patterns

In order to proceed with optimizations, we follow the same approach as in XPath.
In [10] we have used the representation of XPath expressions for optimizing.
As it was commented before, XPath operators are higher order operators, and
then we can take advantage of the T OY facilities for using higher order pat-
terns to rewrite them. This is not the case, however, for XQuery expressions in
T OY because, for instance, xFor and xLet are always applied to two arguments,
and therefore constitute reducible expressions, not higher-order patterns. In or-
der to convert XQuery-T OY expressions into higher-order patterns, we propose
a redefinition of the functions adding a dummy argument. Then, XQuery con-
structors can be redefined as follows:

yLet :: (A -> xQuery) -> (A -> xQuery) -> A -> xQuery
yLet X Y _ = xLet (X _) (Y _)
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yFor :: (A -> xQuery) -> (A -> xQuery) -> A -> xQuery
yFor X Y _ = xFor (X _) (Y _)

The anonymous variable plays a role similar to the quote operator in Lisp
[28]. In our case the expressions will become reducible when any extra argument
is provided. In the meanwhile it can be considered as a data term, and as such it
can be analyzed and modified. In the definitions above, yLet is reduced to xLet
when such extra argument is provided. The two arguments X and Y also need
their extra variable to become reducible. A variable is a special case, which has
to be converted into a function (xvar):

xvar :: xQuery -> A -> xQuery
xvar X _ = X

Now, a given query can be rewritten as a higher order pattern. For instance,
the previous exam can be represented as follows:

xexam = yFor (xvar X)
(yFor (xvar Y) ("food.xml" <$$-- name "food"./.name "item")

‘yReturn‘
(xmlTagY "elem" []

(yFor (xvar Z) ((xvar Y) <$$ (name "name"))
‘yReturn‘ (xmlTagY "ids" [] (xvar Z)) )))

‘yReturn‘
((xvar X) <$$ ((name "ids") ./. name "name"))

The query can be executed in T OY just providing any additional argument,
in this case an anonymous variable:

Toy> xexam _ == R
{ R -> [xmlTag "name" [] [xmlText "watermelon" ] ] }
{ R -> [xmlTag "name" [] [xmlText "oranges" ] ] }
{ R -> [xmlTag "name" [] [xmlText "onions" ] ] }
{ R -> [xmlTag "name" [] [xmlText "strawberries" ] ] }

If the extra argument _ is omitted, then the variable R is bound to the XQuery
code yFor (xvar X) (...name "name")). This behavior allows us to inspect
and modify the query in the next subsection.

4.2 XQuery Transformations

Now, we would like to show how to rewrite XQuery expressions in order to opti-
mize them. We have defined a set of transformation rules for removing outermost
XPath expressions, when possible. Let us remark that correctness of the trans-
formation rules, that is, preserving equivalence, is out of the scope of this paper.
An example of (a subset of) the transformation rules is:
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reduce ((yFor (xvar Z) E) ‘yReturn‘ (xvar Z)) = E
reduce ((xmlTagY N A E) <$$ P) = reduce_xml (xmlTagY N A E) P
reduce_xml (xmlTagY N A E) P = reduce_xmlPath E P
reduce_xmlPath (xmlTagY N A E) P =

if P == (name N) ./. P2
then reduce_xmlPath E P2
else ((xmlTagY N A E) <$$ P)

...

The first reduction rule removes the unnecessary for expressions that define a
variable Z taking a value E only to return Z. The second rule removes XPath
expressions that traverse elements built in the same query. For instance, an
expression of the form $X/a/b, with $X of the form <a>E</a> is reduced to
$Y/b with $Y/b and $X taking the value E (this transformation is performed
by function reduce_xmlPath). The optimizer can be defined as the fixpoint of
function reduce:

optimize :: (A -> xQuery) -> (A -> xQuery)
optimize X = iterate reduce X

iterate :: (A -> A) -> A -> A
iterate G X = if Y == X then Y else iterate G Y

where Y = (G X)

For instance, the running example is optimized as follows:

Toy> optimize xexam == X
{ X -> (<$$-- "food.xml" child .::. (nameT "food") ./.
child .::. (nameT "item") ./. child .::. (nameT "name")) }

Finally, an XQuery expression is executed (with optimizations) in T OY by call-
ing the function run, which is defined as:

run :: (A -> xQuery) -> xQuery
run X = (optimize X) _

By using run, T OY obtains the same four answers as with the original query:

Toy> run xexam == X
{ R -> [xmlTag "name" [] [xmlText "watermelon" ] ] }
{ R -> [xmlTag "name" [] [xmlText "oranges" ] ] }
{ R -> [xmlTag "name" [] [xmlText "onions" ] ] }
{ R -> [xmlTag "name" [] [xmlText "strawberries" ] ] }

In order to analyze the performance of the optimization, the next table compares
the elapsed time for the query running on T OY before and after the optimiza-
tion, with respect to different sizes for file "food.xml".
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Items Initial Query Optimized Query Speed-up
1,000 1.9 0.4 4.8
2,000 3.7 0.8 9.3
4,000 7.4 1.7 4.4
8,000 18.1 3.9 4.6

16,000 36.0 7.8 4.6

The first column indicates the number of item elements included in "food.xml",
the second and third column display the time in seconds required by the original
and the optimized query, respectively, and the last column displays the speed-
up of the optimized code. In order to force the queries to find all the answers,
the submitted goals are (exam == R, false) and (run xexam == R, false),
corresponding to the initial and the optimized query, respectively. The atom
false after the first atomic subgoal always fails, forcing the reevaluation until
no more solutions exist. As can be seen in the table, in this experiment the
optimized query is above 4.5 times faster in the average than the initial one.
In other experiments (for instance, replacing for by let in this example) the
difference can be noticeable also in terms of memory, since the system runs
out of memory computing the query before optimization, but works fine with
the optimized query. Of course, more extensive benchmarks would be needed
to assess this preliminary results. However, the purpose of this paper is not to
propose or to evaluate XQuery optimizations, but to show how they can be easily
incorporated and tested in our framework.

5 Conclusions

We have shown how the declarative nature of the XML query language XQuery
fits in a very natural way in functional-logic languages. Our setting fruitfully
combines the collection of results required by XQuery let statements and the use
of individual values as required by for statements and XPath expressions. For
the users of the functional-logic T OY , the advantage is clear: they can use queries
very similar to XQuery in their programs. Although adapting to the T OY syntax
can be hard at first, we think that the queries are close enough to their equiv-
alents in native XQuery. However, we would like to go further by providing a
parser from XQuery standard syntax to the equivalent T OY expressions.

From the point of view of the XQuery apprentices, the tool can be useful,
specially if they have some previous knowledge of declarative languages. The
possibility of testing query optimizations can be very helpful. The paper shows
a technique based on the use of additional dummy variables for converting queries
in higher-order patters. A similar idea would be to use a data type for repre-
senting the query and then a parser/interpreter for evaluating this data type.
However, we think that the approach considered here has a higher abstraction
level, since the queries can not only be analyzed, they can also be computed
by simply providing an additional argument. Finally, the framework can also
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be interesting for designers of XQuery environments, because it allows users to
easily define prototypes of new features such as new combinators and functions.

A version of the T OY system including the examples of this paper can be
downloaded from http://gpd.sip.ucm.es/rafa/wflp2011/toyxquery.rar
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