Integrating XQuery and Logic Programming^{*}

Jesús M. Almendros-Jiménez, Antonio Becerra-Terón and Francisco J. Enciso-Baños

Dpto. Lenguajes y Computación. Universidad de Almería. {jalmen,abecerra,fjenciso}@ual.es

Abstract. In this paper we investigate how to integrate the XQuery language and logic programming. With this aim, we represent XML documents by means of a logic program. This logic program represents the document schema by means of rules and the document itself by means of facts. Now, XQuery expressions can be integrated into logic programming by considering a translation from for-let-where-return expressions into logic rules and a goal.

1 Introduction

XQuery [W3C07b,CDF⁺04,Wad02,Cha02] is a typed functional language devoted to express queries against XML documents. It contains $XPath \ 2.0$ [W3C07a] as a sublanguage. $XPath \ 2.0$ supports navigation, selection and extraction of fragments from XML documents. XQuery also includes expressions to construct new XML values and to join multiple documents. The design of XQuery has been influenced by group members with expertise in the design and implementation of other high-level languages. XQuery has static typed semantics and a formal semantics which is part of the W3C standard [CDF⁺04,W3C07b].

The integration of *declarative programming* and *XML data processing* is a research field of increasing interest in the last years (see [BBFS05] for a survey). There are proposals of new languages for XML data processing based on functional, and logic programming. In addition, *XPath* and *XQuery* have been also implemented in declarative languages.

The most relevant contribution is the Galax project [MS03,CDF⁺04], which is an implementation of XQuery in functional programming, using OCAML as host language. There are also proposals for new languages based on functional programming rather than implementing XQuery. This is the case of XDuce [HP03] and CDuce [BCF05], which are languages for XML data processing, using regular expression pattern matching over XML trees, subtyping as basic mechanism, and OCAML as host language. The CDuce language does fully statically-typed transformation of XML documents, thus guaranteeing correctness. In addition, there are proposals around Haskell for the handling of XML documents, such as HaXML [Thi02] and [WR99].

^{*} This work has been partially supported by the EU (FEDER) and the Spanish MEC under grant TIN2005-09207-C03-02.

There are also contributions in the field of use logic programming for the handling of XML documents. For instance, the *Xcerpt project* [SB02] proposes a pattern and rule-based query language for XML documents, using the so-called query terms including logic variables for the retrieval of XML elements. For this new language a specialized unification algorithm for query terms has been studied. Another contribution of a new language is XPathLog (the LOPIX system) [May04] which is a Datalog-style extension of XPath with variable bindings. This is also the case of *XCentric* [CF03], which can represent XML documents by means of logic programming, and handles XML documents by considering terms with functions of flexible arity and regular types. Finally, FNPath [Sei02] is a proposal for using Prolog as query language for XML documents based on a field-notation, for evaluating XPath expressions based on DOM. The Rule Markup Language (*RULEML*) [Bol01,Bol00] is a different kind of proposal in the research area. The aim of the approach is the representation of Prolog facts and rules into XML documents, and thus, the introduction of *rule systems* into the Web. Finally, some well-known Prolog implementations include libraries for loading and querying XML documents, such as SWI-Prolog [Wie05] and CIAO [CH01].

In this paper, we investigate how to integrate the XQuery language and logic programming. With this aim:

- 1. A XML document can be seen as a logic program, by considering *facts* and *rules* for expressing both the XML schema and document. This approach was already studied in our previous work [ABE07,ABE06].
- 2. A XQuery expression can be translated into logic programming by considering a set of rules and a specific goal. Taking as starting point the translation of XPath of our previous work [ABE07,ABE06], the translation of XQuery introduces new rules for the join of documents, and for the translation of forlet-where-return expressions into logic programming. In addition, a specific goal is generated for obtaining the answer to an XQuery query.
- 3. Our technique allows the handling of XML documents as follows. Firstly, the XML documents are loaded. It involves the translation of the XML documents into a logic program. For efficiency reasons the rules, which correspond to the XML document structure, are loaded in *main memory*, but facts, which represent the values of the XML document, are stored in *secondary memory*, whenever they do not fit in main memory (using appropriate *indexing techniques*). Secondly, the user can now write queries against the loaded documents. Now, *XQuery* queries are translated into a logic program and a specific goal. The evaluation of such goal uses the indexing in order to improve the efficiency of query solving. Finally, the answer of the goal can be represented by means of an output XML document.

As far as we know, this is the first time that XQuery is implemented in logic programming. Previous proposals either define new query languages for XML documents in logic and functional programming or implement XQuery, but in functional programming. The advantages of such proposal is that XQueryis embedded into logic programming, and thus XQuery can be combined with logic programs. For instance, logic programming can be used as inference engine, one of the requirements of the so-called *Semantic Web* (http://www.w3.org/2001/sw/), in the line of *RuleML*.

Our proposal requires the representation of XML documents into logic programming, which can be compared with those ones representing XML documents in logic programming (for instance, [SB02,CF03]) and, with those ones representing XML documents in relational databases (for instance, [BGvK⁺05]). In our case, rules are used for expressing the structure of well-formed XML documents, and XML elements are represented by means of facts. Moreover, our handling of XML documents is more "database-oriented" since we use secondary memory and file indexing for selective reading of records. The reason for such decision is that XML documents can usually be too big for main memory [MS03]. Our proposal uses as basis the implementation of *XPath* in logic programming studied in our previous work [ABE07]. In addition, we have studied how to consider a bottom-up approach to the same proposal of [ABE07] in [ABE06].

The structure of the paper is as follows. Section 2 will present the translation of XML documents into Prolog; section 3 will review the translation of *XPath* into logic programming; section 4 will provide the new translation of *XQuery* expressions into logic programming; and finally, section 5 will conclude and present future work. A more complete version of our paper (with a bigger set of examples) can be found in http://www.ual.es/~jalmen.

2 Translating XML Documents into Logic Programming

In order to define our translation we need to number the nodes of the XML document. A similar numbering has been already adopted in some proposals for representing XML in relational databases [OOP+04,TVB+02,BGvK+05].

Given an XML document, we can consider a new XML document called node-numbered XML document as follows. Starting from the root element numbered as 1, the node-numbered XML document is numbered using an attribute called **nodenumber**¹ where each *j*-th child of a tagged element is numbered with the sequence of natural numbers $i_1 \dots i_t . j$ whenever the parent is numbered as $i_1 \dots . i_t : < tag att_1 = v_1, \dots, att_n = v_n, nodenumber= i_1 \dots i_t . j > elem_1, \dots, elem_s < / tag >.$ This is the case of tagged elements. If the *j*-th child is of a basic type (non tagged) and the parent is an inner node, then the element is labeled and numbered as follows: < unlabeled **nodenumber** = $i_1 \dots . i_t . j > elem < / unlabeled >;$ otherwise the element is not numbered. It gives to us a hierarchical and left-to-right numbering of the nodes of an XML document. An element in an XML document is further left in the XML tree than another when the node number is smaller w.r.t. the lexicographic order of sequence of natural numbers. Any numbering that identifies each inner node and leaf could be adapted to our translation.

In addition, we have to consider a new document called *type and node-numbered XML document* numbered using an attribute called **typenumber** as

¹ It is supposed that "nodenumber" is not already used as attribute in the tags of the original XML document.

follows. Starting the numbering from 1 in the root of the node-numbered XML document, each tagged element is numbered as: $\langle tag \ att_1 = v_1, \ldots, att_n = v_n, nodenumber = i_1, \ldots, i_t.j$, **typenumber** = $\mathbf{k} > elem_1, \ldots, elem_s < /tag >$. The type number k of the tag is equal to l + n + 1 whenever the type number of the parent is l, and n is the number of tagged elements weakly distinct ² occurring in leftmost positions at the same level of the XML tree ³.

Now, the translation of the XML document into a logic program is as follows. For each inner node in the type and node numbered XML document $\langle tag \ att_1 = v_1, \ldots, att_n = v_n, nodenumber = i, typenumber = k > elem_1, \ldots, elem_s < /tag > we consider the following rule, called$ *schema rule*:

Schema Rule in Logic Programming		
$tag(tagtype(Tag_{i_1},\ldots,Tag_{i_t},[Att_1,\ldots,Att_n]),NTag,k,Doc):$		
$tag_{i_1}(Tag_{i_1}, [NTag_{i_1} NTag], r, Doc),$		
$tag_{i_t}(Tag_{i_t}, [NTag_{i_t} NTag], r, Doc), \\ att_1(Att_1, NTag, r, Doc),$		
$\ldots, att_n(Att_n, NTag, r, Doc).$		

where tagtype is a new function symbol used for building a Prolog term containing the XML document; $\{tag_{i_1}, \ldots, tag_{i_t}\}, i_j \in \{1, \ldots, s\}, 1 \leq j \leq t$, is the set of tags of the tagged elements $elem_1, \ldots, elem_s; Tag_{i_1}, \ldots, Tag_{i_t}$ are variables; att_1, \ldots, att_n are the attribute names; Att_1, \ldots, Att_n are variables, one for each attribute name; $NTag_{i_1}, \ldots, NTag_{i_t}$ are variables (used for representing the last number of the node number of the children); NTag is a variable (used for representing the node number of tag); k is the type number of tag; and finally, r is the type number of the tagged elements $elem_1, \ldots, elem_s$ ⁴.

In addition, we consider facts of the form: $att_j(v_j, i, k, doc)$ $(1 \le j \le n)$, where doc is the name of the document. Finally, for each leaf in the type and node numbered XML document: < tag nodenumber = i, typenumber = k >value < /tag >, we consider the fact: tag(value, i, k, doc). For instance, let us consider the following XML document called "books.xml":

XML document
$<\!books>$
<book year="2003"></book>
< author > Abiteboul < /author >
< author > Buneman < / author >
< author > Suciu < /author >
<title>Data on the Web</title>
<review>A fine book.</review>

 $^{^2\,}$ Two elements are weakly distinct whenever they have the same tag but not the same structure.

³ In other words, type numbering is done by levels and in left-to-right order, but each occurrence of weakly distinct elements increases the numbering in one unit.

⁴ Let us remark that since *tag* is a tagged element, then $elem_1, \ldots, elem_s$ have been tagged with "unlabeled" labels in the type and node numbered XML document when they were not labeled; thus they must have a type number.

```
<book year="2002">
<author>Buneman</author>
<title>XML in Scotland</title>
<review><em>The <em>best</em> ever!</em></review>
</book>
</books>
```

Now, the previous XML document can be represented by means of a logic program as follows:

Rules (Schema):	Facts (Document):
<pre>books(bookstype(Book, []), NBooks,1,Doc) :- book(Book, [NBook]NBooks],2,Doc). book(booktype(Author, Title, Review, [Year]), NBook ,2,Doc) :- author(Author, [NAu NBook],3,Doc), title(Title, [NTitle]NBook],3,Doc), review(Review, [NRe[NBook],3,Doc), year(Year, NBook,3,Doc).</pre>	year('2003', [1, 1], 3, "books.xml"). author('Abiteboul', [1, 1, 1], 3, "books.xml"). author('Buneman', [2, 1, 1], 3, "books.xml"). author('Suciu', [3,1,1], 3, "books.xml"). title('Data on the Web', [4, 1, 1], 3, "books.xml") unlabeled('A', [1, 5, 1, 1], 4, "books.xml"). em('fine', [2, 5, 1, 1], 4, "books.xml").
<pre>review(reviewtype(Un, Em, []), NReview, 3, Doc): unlabeled(Un, [NUn NReview], 4, Doc), em(Em, [NEm NReview], 4, Doc). review(reviewtype(Em, []), NReview, 3, Doc):- em(Em, [NEm NReview], 5, Doc). em(emtype(Unlabeled, Em, []), NEms, 5, Doc):- unlabeled(Unlabeled, [NUn NEms], 6, Doc), em(Em, [NEm NEms], 6, Doc).</pre>	unlabeled('book.', [3, 5, 1, 1], 4,"books.xml"). year('2002', [2, 1], 3,"books.xml"). author('Buneman', [1, 2, 1], 3,"books.xml"). title('XML in Scotland', [2, 2, 1], 3,"books.xml" unlabeled('The', [1, 1, 3, 2, 1], 6,"books.xml"). em('best', [2, 1, 3, 2, 1], 6,"books.xml"). unlabeled('ever!', [3, 1, 3, 2, 1], 6,"books.xml").

Here we can see the translation of each tag into a predicate name: *books*, *book*, etc. Each predicate has four arguments, the first one, used for representing the XML document structure, is encapsulated into a function symbol with the same name as the tag adding the suffix *type*. Therefore, we have *bookstype*, *booktype*, etc. The second argument is used for numbering each node; the third argument of the predicates is used for numbering each type; and the last argument represents the document name. The key element of our translation is to be able to recover the original XML document from the set of rules and facts.

3 Translating XPath into Logic Programming

In this section, we present how *XPath* expressions can be translated into a logic program. Here we present the basic ideas, a more detailed description can be found in [ABE07].

We restrict ourselves to XPath expressions of the form $xpathexpr = /expr_1 \dots /expr_n$ where each $expr_i$ can be a tag or a *boolean condition* of the form [xpathexpr = value], where value has a basic type. More complex XPath queries [W3C07a] will be expressed in XQuery, and therefore they will be translated in next section.

With the previous assumption, each XPath expression $xpathexpr = /expr_1 \dots /expr_n$ defines a free of equalities XPath expression, denoted by FE(xpathexpr). This free of equalities XPath expression defines a subtree of the XML document, in which is required that some paths exist (occurences of boolean conditions [xpathexpr]). For instance, with respect to the XPath expression /books/book

[author = Suciu]/title, the free of equalities XPath expression is /books/book[author]/title and the subtree of the type and node numbered XML document which corresponds with the expression /books/book [author]/title is as follows:

```
Subtree defined by a Free of Equalities XPath Expression

<books nodenumber=1, typenumber=1>

<book year="2003", nodenumber=1.1, typenumber=2>

<author nodenumber=1.1.1 typenumber=3>Abiteboul</author>

<author nodenumber=1.1.2 typenumber=3>Buneman</author>

<author nodenumber=1.1.3 typenumber=3>Data on the Web</title>

</book>

<book year="2002" nodenumber=1.2, typenumber=2>

<author nodenumber=1.2.1 typenumber=3>Buneman</author>

<title nodenumber=1.2.1 typenumber=3>Buneman</author>

<book year="2002" nodenumber=3>Buneman</author>

<title nodenumber=1.2.2 typenumber=3>Suneman</author>

<title nodenumber=1.2.2 typenumber=3>XML in Scotland</title>

</book>
```

Now, given a type and node numbered XML document \mathcal{D} , a program \mathcal{P} representing \mathcal{D} , and an *XPath* expression *xpathexpr* then the *logic program obtained* from *xpathexpr* is $\mathcal{P}^{xpathexpr}$, obtained from \mathcal{P} taking the schema rules and facts for the subtree of \mathcal{D} defined by FE(xpathexpr). For instance, with respect to the above example, the schema rules defined by /books/book [author]/title are:

```
        Translation into Prolog of an XPath Expression

        books(bookstype(Book, []), NBooks, 1,Doc):-

        book(Book, [NBook], 2,Doc).

        book(booktype(Author, Title, Review, [Year]), NBook, 2, Doc) :-

        author(Author, [NAuthor] NBook], 3, Doc),

        title(Title, [NTitle] NBook], 3, Doc).
```

and the facts, the set of facts for *title* and *author*. Let us remark that in practice, these rules can be obtained from the schema rules by removing predicates, that is, removing the predicates in the schema rules which are not tags in the free of equalities XPath expression.

Now, given a type and node numbered XML document, and an XPath expression xpathexpr, the goals obtained from xpathexpr are defined as follows. Firstly, each XPath expression xpathexpr can be mapped into a set of prolog terms, denoted by PT(xpathexpr), representing the pattern of the query ⁵. Basically, the pattern represents the required structure of the record. Now, the goals are defined as: $\{: -tag(Tag, Node, r, doc) \ \{Tag \rightarrow t \ \} | t \in PT(xpathexpr), r is a type number of tag for t\}$ where tag is the leftmost tag in xpathexpr with a boolean condition (and it is the rightmost tag whenever boolean conditions do not exist); Tag and Node are variables; and doc is the document name.

For instance, with respect to $/books/book [author = Suciu]/title, PT(/books/book [author = Suciu]/title) = {booktype('Suciu', Title, Review, [Year])}, and therefore the (unique) goal is : <math>-book(booktype('Suciu', Title, Review, Year), Node, 2, "books.xml").$

We will call to the leftmost tag with a boolean condition the *head tag* of *xpathexpr* and is denoted by htag(xpathexpr). In the previous example, htag(/books/book[author = Suciu]/title) = book.

 $^{^5}$ Due to XML records can have different structure, one pattern is generated for each kind of record.

In summary, the handling of an *XPath* query involves the "specialization" of the schema rules of the XML document and the generation of one or more goals. The goals are obtained from the leftmost tag with a boolean condition on the *XPath* expression. Obviously, instead of a set of goals for each *XPath* expression, a unique goal can be considered by adding new rules. In the following we will assume this case.

4 Translating XQuery into Logic Programming

Similarly to XPath, an XQuery expression is translated into a logic program and generates a specific goal. We focus on the XQuery core language, whose grammar can be defined as follows.

Core XQuery

 $\begin{array}{l} xquery:=dxpfree| < tag >' \{'xquery, \ldots, xquery'\}' < /tag > |flwr.\\ dxpfree:=document(doc) '/ 'xpfree.\\ flwr:= for $var in vxpfree [where constraint] return xqvar\\ & | let $var := vxpfree [where constraint] return xqvar.\\ xqvar:=vxpfree| < tag >' \{'xqvar, \ldots, xqvar'\}' < /tag > |flwr.\\ vxpfree:= $var | $var '/ 'xpfree | dxpfree.\\ Op:= <= | >= | < | > | =.\\ constraint := vxpfree Op value | vxpfree Op vxpfree\\ & | constraint 'or ' constraint | constraint 'and ' constraint.\\ \end{array}$

where value is an XML document, doc is a document name, and xpfree is a free of equalities XPath expression. Let us remark that XQuery expressions use free of equalities XPath expressions, given that equalities can be always introduced in where expressions. Finally, we will say that an XQuery expression ends with attribute name in the case of the XQuery expression has the form vxpfree and the rightmost element has the form @att, where att is an attribute name. The translation of an XQuery expression consists of three elements.

- Firstly, for each XQuery expression xquery, we can define analogously to XPath expressions, the so-called head tag, denoted by htag(xquery), which is the predicate name used for the building of the goal (or subgoal whenever the expression xquery is nested).
- Secondly, for each XQuery expression xquery, we can define the so-called tag position, denoted by tagpos(xquery), representing the argument of the head tag (i.e. the argument of the predicate name) in which the answer is retrieved.
- Finally, for each XQuery expression xquery we can define a logic program \mathcal{P}^{xquery} and a specific goal.

In other words, each XQuery expression can be mapped in the translation into a program \mathcal{P}^{xquery} and into a goal of the form : $-tag(Tag_1, \ldots, Tag_n, Node, Type, Docs)$ where tag is the head tag, and Tag_{pos} represents the answer of the query, where pos = tagpos(xquery). In addition, Node and Type represent the node and type numbering of the output document, and Docs represents the documents involved in the query. The above elements are defined in Tables 2 and 3 for each case, assuming the notation of Table 1.

Table 1. Notation

$Vars(\Gamma) = \{\$var (\$var, let, vxpfree, C) \in \Gamma \text{ or } (\$var, for, vxpfree, C) \in \Gamma\};$
$Doc(\$var, \Gamma) = doc$ whenever $\overline{\Gamma}_{\$var} = document(doc)/xpfree;$
$DocVars(\Gamma) = \{\$var (\$var, let, dxpfree, C) \in \Gamma \text{ or } (\$var, for, dxpfree, C) \in \Gamma \};$
$\Gamma_{\$var} = vxpfree \text{ whenever } (\$var, let, vxpfree, C) \text{ or } (\$var, for, vxpfree, C) \in \Gamma;$
$\overline{\Gamma}_{\$var} = vxpfree[\lambda_1 \cdot \ldots \cdot \lambda_n]$ where $\lambda_i = \{\$var_i \to \Gamma_{\$var_i}\}$ and
$\{\$var_1, \ldots, \$var_n\} = Vars(\Gamma);$
$Root(\$var) = \var' whenever $\$var \in DocVars(\Gamma)$ and $\$var = \var'
or $(\$var, let, \$var''/xpfree, C) \in \Gamma$ or $(\$var, for, \$var''/xpfree, C) \in \Gamma$
and $Root(\$var'') = \$var';$
$Rootedby(\$var, \mathcal{X}) = \{xpfree \$var/xpfree \in \mathcal{X}\};$
$Rootedby(\$var, \Gamma) = \{xpfree \$var/xpfree \ Op \ vxpfree \in C$
or $var/xpfree Op \ value \in C, \ C \in Constraints(var, \Gamma)$; and
$Constraints(\$var, \Gamma) = \{C_i C \equiv C_1 \ Op \ \dots \ Op \ C_n,$
$(\$var, let, vxpfree, C) \in \Gamma \text{ or } (\$var, for, vxpfree, C) \in \Gamma \}$

4.1 Examples

Let us suppose a query requesting the year and title of the books published before 2003.

```
xquery = for $book in document ('books.xml')/books/book
return let $year := $book/@year
where $year<2003
return <mybook>{$year, $book/title}</mybook>
```

For this query, the translation is as follows:

```
\mathcal{P}_{(book, for, document('books.xml')/books/book, \emptyset)}^{xquery_2} = \mathcal{P}_{(book, for, document('books.xml')/books/book, \emptyset)}^{xquery_2} =
\mathcal{P}^{xquery_3}_{\omega}
 \begin{array}{l} \mathcal{P}_{(book,for,document('books.xml')/books/book,\emptyset),(\$year,let,\$book/@year,\$year<2003)} = \\ \{\mathcal{R}\} \cup \mathcal{P}_{(book,for,document('books.xml')/books/book,\emptyset),(\$year,let,\$book/@year,\$year<2003)} \end{array} 
\mathcal{R} =
                 [mybook(mybooktype(Title, [Year]), [Node], [Type], [Doc]) : -
join(Title, Year, Node, Type, Doc).
                                  \frac{1}{\sqrt{join}} = \frac{htag(\$year), htag(\$book/title)};
\mathcal{P}_{\{y_{o}, y_{o}, 
              \cup \mathcal{P}^{document('books.xml')/books/book/@year} \cup \mathcal{P}^{document('books.xml')/books/book/title} \mathcal{J}^{\Gamma} = \_
                             [join(Title, Year, [Node], [Type], [Doc]): -
                                                           vbook(Title, Year, Node, Type, Doc).
                                                           constraints(vbook(Title, Year)).
                              % DocVars(\Gamma) = \{\$book\}, \$year, \$book/title \in \mathcal{X}
                             \% Root(\$year) = \$book, Root(\$book) = \$book.
              \mathcal{C}^{\Gamma} =
                                 constraints(Vbook) : -lc_1^1(Vbook).
                                lc_1^1(Vbook): -c_1^1(Vbook).
                                c_1^1(vbook(Title, Year)): -leq(Year, 2003).
                                 \% C^1 \equiv c_1^1, c_1^1 \equiv \$ year < 2003
                                 % C^1 \in constraints(\$year, \Gamma) and Root(\$year) = \$book
                 \mathcal{R}^{\$book} =
                                vbook(Title, Year, [Node, Node], [TTitle, TYear], 'books.xml') : -
                                                              title(Title, [NTitle|Node], TTitle, 'books.xml'), year(Year, Node, TYear, 'books.xml').
```

Table 2	Translation	of XOuerv into	Logic Programming
TUDIC 2.	rianonauton	or requery mod	bogic i rogramming

$\mathcal{P}^{document(doc)/xpfree} =_{def} \mathcal{P}^{xpfree}$	
$htag(document(doc)/xpfree) =_{def} htag(xpfree)$	
$tagpos(document(doc)/xpfree) =_{def} tagpos(xpfree)$	
$\mathcal{P}^{\langle tag \rangle \{xquery_1,,xquery_n\} \langle /tag \rangle} =_{def}$	
$\{\mathcal{R}\} \cup_{1 \leq i \leq n} \mathcal{P}^{xquery_i}$	$\boxed{Tag^t} \ 1 \le t \le k,$
$\mathcal{R} \equiv$	denotes Tag_1^t, \ldots, Tag_r^t
$tag(tagtype(Tag_{p_1}^1,\ldots,Tag_{p_k}^k,[Att_{q_1}^1,\ldots,Att_{q_k}^s]),$	where r is the arity of tag_t ;
$[NTaq_1, \ldots, NTaq_k, NAtt_1, \ldots, NAtt_s],$	$\overline{Att^j} \ 1 \le j \le s,$
$[TTaq_1, \ldots, TTaq_k, TAtt_1, \ldots, TAtt_s],$	denotes Att_1^j, \ldots, Att_s^j
$[DTag_1, \dots, DTag_k, DAtt_1, \dots, DAtt_s]) : -$	where s is the arity of att_i ;
$taq_1(\overline{Taq^1}, NTaq_1, TTaq_1, DTaq_1),$	$htag(xquery_j) = att_i, \ 1 \le i \le s,$
$ug_1(ug', wug_1, ug_1, Dug_1),$	for some $j \in \{1, \ldots, n\}$
$tag_k(\overline{Tag^k}, NTag_k, TTag_k, DTag_k),$	which ends with attribute names,
	$htag(xquery_i) = tag_t, \ 1 \le t \le k,$
$att_1(Att^1, NAtt_1, TAtt_1, DAtt_1),$	otherwise
····	$tagpos(xquery_j) = q_i$ and
$att_s(\overline{Att^s}, NAtt_s, TAtt_s, DAtt_s).$	$tagpos(xquery_j) = p_t$
	in the same cases.
$htag(xquery) =_{def} tag, tagpos(xquery) =_{def} 1$	
$\mathcal{P}^{\text{for } \$var \text{ in } vxpfree \ [where C] return \ xqvar} =_{def}$	
$\mathcal{P}^{xqvar}_{\{\{\$var, for, vxpfree, C\}\}}$	
$htag (xquery) =_{def} htag(xqvar)$	
$t_{aanos}(x_{aueru}) = d_{a} f_{aanos}(x_{avar})$	
$\mathcal{P}^{\text{let }\$var := vxpfree [where C] return xqvar} =_{def}$	
$\mathcal{P}^{xqvar}_{\{(\$var, let, vxpfree, C)\}}$	
$htag (xquery) =_{def} htag(xqvar)$	
$tagpos(xquery) =_{def} tagpos(xqvar)$	
	$xquery \equiv$
	$\langle tag \rangle \langle xqvar_1, \ldots, \rangle$
\mathcal{P}^{χ}	$\langle tag \rangle \{xqvar_1, \dots, xqvar_n\} \langle /tag \rangle$
$\mathcal{P}_{\Gamma}^{\mathcal{X}} =_{def} \qquad \qquad$	$\langle tag \rangle \{xqvar_1, \dots, xqvar_n\} \langle /tag \rangle $ $xquery/xpfree \in X$
$\{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}}$	$\langle tag \rangle \{xqvar_1, \dots, xqvar_n\} \langle /tag \rangle$ $xquery/xpfree \in \mathcal{X}$ $xpfree \equiv /tag/xpfree_0$
$ \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} $ $ \mathcal{R} \equiv $	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xquar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \end{array} $
$\{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}}$	$\langle tag \rangle \{xqvar_1, \dots, xqvar_n\} \langle /tag \rangle$ $xquery/xpfree \in X$ $xpfree \equiv /tag/xpfree_0$ $\{tag_1, \dots, tag_s\} =$ $\{htag (xqvar_1 / xpfree_0),$
$ \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} $ $ \mathcal{R} \equiv $	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \end{array} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\} \cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ [Node_{1}, \dots, Node_{s}], \\ [Type_{1}, \dots, Type_{s}], \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{p_j}^j, 1 \leq i \leq r, \ whenever \end{array} $
$\mathcal{R} \equiv \begin{cases} \mathcal{R} \} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\} \cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \ldots, Tag_{r}, [Att^{1}, \ldots, Att^{m}]), \\ [Node_{1}, \ldots, Node_{s}], \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{p_j}^p, 1 \leq i \leq r, \ whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \end{array} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\} \cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ [Node_{1}, \dots, Node_{s}], \\ [Type_{1}, \dots, Type_{s}], \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{j}^j, 1 \leq i \leq r, whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = tag_j, \end{array} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\} \cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ [Node_{1}, \dots, Node_{s}], \\ [Type_{1}, \dots, Type_{s}], \\ [Doc_{1}, \dots, Doc_{s}]) : - \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{p_j}^j, 1 \le i \le r, \ whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = tag_j, \\ p \in \{1, \ldots, n\}; \end{array} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ [Node_{1}, \dots, Node_{s}], \\ [Type_{1}, \dots, Type_{s}], \\ [Doc_{1}, \dots, Doc_{s}]) : - \\ tag_{i}(Tag^{1}, Node_{1}, Type_{1}, Doc_{1}), \\ \dots & \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{p_j}^j, 1 \le i \le r, \ whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = tag_j, \\ p \in \{1, \ldots, n\}; \end{array} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ [Node_{1}, \dots, Node_{s}], \\ [Type_{1}, \dots, Type_{s}], \\ [Doc_{1}, \dots, Doc_{s}]) : - \\ tag_{1}(Tag^{T}, Node_{1}, Type_{1}, Doc_{1}), \\ \dots \\ tag_{s}(\overline{Tag^{s}}, Node_{s}, Type_{s}, Doc_{s}). \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1,\ldots,\\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X}\\ xpfree \equiv /tag/xpfree_0\\ \{tag_1,\ldots,tag_s\} = \\ \{htag\ (xqvar_1\ /xpfree_0),\\ \ldots,\ htag\ (xqvar_n\ /xpfree_0)\};\\ Tag_i = Tag_{p_j}^{j}, 1 \leq i \leq r, \ whenever\\ tagpos(xqvar_p\ /xpfree_0) = p_j,\\ htag(xqvar_p\ /xpfree_0) = tag_j,\\ p \in \{1,\ldots,n\};\\ Att_l = Tag_{p_j}^{j}, 1 \leq l \leq s, \ whenever \end{array} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\} \cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ [Node_{1}, \dots, Node_{s}], \\ [Type_{1}, \dots, Type_{s}], \\ [Doc_{1}, \dots, Doc_{s}]) : - \\ tag_{1}(Tag^{1}, Node_{1}, Type_{1}, Doc_{1}), \\ \dots \\ tag_{s}(\overline{Tag^{s}}, Node_{s}, Type_{s}, Doc_{s}). \\ htag(xquery/xpfree) = _{def} tag \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery / xpfree \in \mathcal{X} \\ xpfree \equiv /tag / xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{p_j}^j, 1 \leq i \leq r, whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = tag_j, \\ p \in \{1, \ldots, n\}; \\ Att_l = Tag_{p_j}^j, 1 \leq l \leq s, whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \end{array} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\} \cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ [Node_{1}, \dots, Node_{s}], \\ [Type_{1}, \dots, Type_{s}], \\ [Doc_{1}, \dots, Doc_{s}]) : - \\ tag_{1}(Tag^{1}, Node_{1}, Type_{1}, Doc_{1}), \\ \dots \\ tag_{s}(\overline{Tag^{s}}, Node_{s}, Type_{s}, Doc_{s}). \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{p_j}^{j}, 1 \leq i \leq r, whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = tag_j, \\ p \in \{1, \ldots, n\}; \\ Att_l = Tag_{p_j}^{j}, 1 \leq l \leq s, whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = tag_j \\ \end{array} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\} \cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ [Node_{1}, \dots, Node_{s}], \\ [Type_{1}, \dots, Type_{s}], \\ [Doc_{1}, \dots, Doc_{s}]) : - \\ tag_{1}(Tag^{1}, Node_{1}, Type_{1}, Doc_{1}), \\ \dots \\ tag_{s}(\overline{Tag^{s}}, Node_{s}, Type_{s}, Doc_{s}). \\ htag(xquery/xpfree) = _{def} tag \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery / xpfree \in \mathcal{X} \\ xpfree \equiv /tag / xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{p_j}^j, 1 \leq i \leq r, whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = tag_j, \\ p \in \{1, \ldots, n\}; \\ Att_l = Tag_{p_j}^j, 1 \leq l \leq s, whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \end{array} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ [Node_{1}, \dots, Node_{s}], \\ [Type_{1}, \dots, Type_{s}], \\ [Doc_{1}, \dots, Doc_{s}]) : - \\ tag_{1}(Tag^{1}, Node_{1}, Type_{1}, Doc_{1}), \\ \dots \\ tag_{s}(\overline{Tag^{s}}, Node_{s}, Type_{s}, Doc_{s}). \\ htag(xquery/xpfree) =_{def} tag \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{p_j}^{j}, 1 \leq i \leq r, \ whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = tag_j, \\ p \in \{1, \ldots, n\}; \\ Att_l = Tag_{p_j}^{j}, 1 \leq l \leq s, \ whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = tag_j \\ p \in \{1, \ldots, n\}; \\ htag(xqvar_p / xpfree_0) = tag_j \\ p \in \{1, \ldots, n\} \end{cases} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ [Node_{1}, \dots, Node_{s}], \\ [Type_{1}, \dots, Type_{s}], \\ [Doc_{1}, \dots, Doc_{s}]) : - \\ tag_{1}(Tag^{1}, Node_{1}, Type_{1}, Doc_{1}), \\ \dots \\ tag_{s}(\overline{Tag^{s}}, Node_{s}, Type_{s}, Doc_{s}). \\ htag(xquery/xpfree) =_{def} tag \\ tagpos(xquery/xpfree) =_{def} 1 \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1,\ldots,\\ xquar_n\} < /tag > \\ xquery/xpfree \in X\\ xpfree \equiv /tag/xpfree_0\\ \{tag_1,\ldots,tag_s\} = \\ \{htag (xqvar_1 / xpfree_0),\\ \ldots, htag (xqvar_n / xpfree_0)\};\\ Tag_i = Tag_{p_j}^j, 1 \leq i \leq r, \ whenever\\ tagpos(xqvar_p / xpfree_0) = p_j,\\ htag(xqvar_p / xpfree_0) = tag_j,\\ p \in \{1,\ldots,n\};\\ Att_l = Tag_{p_j}^j, 1 \leq l \leq s, \ whenever\\ tagpos(xqvar_p / xpfree_0) = tag_j,\\ p \in \{1,\ldots,n\};\\ xquar_p / xpfree_0) = tag_j\\ p \in \{1,\ldots,n\};\\ xquar_p / xpfree_0 = tag_j,\\ xquar_p / xpfree_0 = tag_j$
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\} \cup 1 \leq i \leq n} \{xqvar_i/xpfree_0\} \\ \\ \mathcal{R} \equiv \\ tag(tagtype(Tag_1, \dots, Tag_r, [Att^1, \dots, Att^m]), \\ [Node_1, \dots, Node_s], \\ [Type_1, \dots, Type_s], \\ [Doc_1, \dots, Doc_s]) : - \\ tag_i(Tag^1, Node_1, Type_1, Doc_1), \\ \dots \\ tag_s(Tag^s, Node_s, Type_s, Doc_s). \\ \\ htag(xquery/xpfree) =_{def} tag \\ tagpos(xquery/xpfree) =_{def} 1 \\ \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1,\ldots,\\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1,\ldots,tag_s\} = \\ \{htag (xqvar_1 / xpfree_0),\\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{p_j}^j, 1 \leq i \leq r, \ whenever \\ tagpos(xqvar_p / xpfree_0) = tag_j, \\ p \in \{1,\ldots,n\}; \\ Att_l = Tag_{p_j}^j, 1 \leq l \leq s, \ whenever \\ tagpos(xqvar_p / xpfree_0) = tag_j \\ p \in \{1,\ldots,n\}; \\ aqvar_p / xpfree_0) = tag_j \\ p \in \{1,\ldots,n\}; \\ xqvar_p / xpfree_0) = tag_j \\ p \in \{1,\ldots,n\}; \\ xqvar_p / xpfree_0 \\ ends \ with \ attribute \ names \\ \end{array} $
$ \begin{aligned} & \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1 \leq i \leq n} \{xqvar_{i}/xpfree_{0}\}} \\ \mathcal{R} \equiv \\ & tag(tagtype(Tag_{1}, \dots, Tag_{r}, [Att^{1}, \dots, Att^{m}]), \\ & [Node_{1}, \dots, Node_{s}], \\ & [Type_{1}, \dots, Type_{s}], \\ & [Doc_{1}, \dots, Doc_{s}]) : - \\ & tag_{i}(Tag^{1}, Node_{1}, Type_{1}, Doc_{1}), \\ & \dots \\ & tag_{s}(\overline{Tag^{s}}, Node_{s}, Type_{s}, Doc_{s}). \\ htag(xquery/xpfree) = d_{ef} tag \\ tagpos(xquery/xpfree) = d_{ef} 1 \\ \\ \hline \mathcal{P}_{\Gamma}^{\mathcal{X}} =_{def} \mathcal{P}_{\Gamma \cup \{(\$ar, for, vxpfree, C)\}}^{\mathcal{X}-\{xquery/xpfree\} \cup \{xqvar/xpfree\}} \\ htag(xquery/xpfree) =_{def} htag(xqvar/xpfree) \end{aligned} $	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery/xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\ \ldots, htag (xqvar_n / xpfree_0)\}; \\ Tag_i = Tag_{p_j}^{j}, 1 \leq i \leq r, whenever \\ tagpos(xqvar_p / xpfree_0) = p_j, \\ htag(xqvar_p / xpfree_0) = tag_j, \\ p \in \{1, \ldots, n\}; \\ Att_l = Tag_{p_j}^{j}, 1 \leq l \leq s, whenever \\ tagpos(xqvar_p / xpfree_0) = tag_j \\ p \in \{1, \ldots, n\}; \\ xqvar_p / xpfree_0) = tag_j \\ p \in \{1, \ldots, n\}; \\ xqvar_p / xpfree_0 \\ ends with attribute names \\ xquery \equiv \end{array} $
$\mathcal{R} \equiv \begin{cases} \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\} \cup 1 \leq i \leq n} \{xqvar_i/xpfree_0\} \\ \\ \mathcal{R} \equiv \\ tag(tagtype(Tag_1, \dots, Tag_r, [Att^1, \dots, Att^m]), \\ [Node_1, \dots, Node_s], \\ [Type_1, \dots, Type_s], \\ [Doc_1, \dots, Doc_s]) : - \\ tag_i(Tag^1, Node_1, Type_1, Doc_1), \\ \dots \\ tag_s(Tag^s, Node_s, Type_s, Doc_s). \\ \\ htag(xquery/xpfree) = d_{ef} tag \\ tagpos(xquery/xpfree) = d_{ef} 1 \\ \end{cases}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\ xqvar_n\} < /tag > \\ xquery /xpfree \in \mathcal{X} \\ xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 /xpfree_0), \\ \ldots, htag (xqvar_n /xpfree_0)\}; \\ Tag_i = Tag_{p_j}^j, 1 \le i \le r, \ whenever \\ tagpos(xqvar_p /xpfree_0) = tag_j, \\ p \in \{1, \ldots, n\}; \\ Att_l = Tag_{p_j}^j, 1 \le l \le s, \ whenever \\ tagpos(xqvar_p /xpfree_0) = tag_j \\ p \in \{1, \ldots, n\}; \\ Att_l = Tag_{p_j}^j, 1 \le l \le s, \ whenever \\ tagpos(xqvar_p /xpfree_0) = tag_j \\ p \in \{1, \ldots, n\}; \\ xquar_p /xpfree_0 = tag_j \\ p \in \{1, \ldots, n\}; \\ xquar_p /xpfree_0 = tag_j \\ p \in \{1, \ldots, n\}; \\ xquar_p /xpfree_0 \\ ends \ with \ attribute \ names \\ xquery \equiv \\ \textbf{for $var $in vxpfree $[where $C]$} \end{array} $
$ \begin{aligned} & \{\mathcal{R}\}\cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1\leq i\leq n}\{xqvar_{i}/xpfree_{0}\}} \\ \mathcal{R} \equiv \\ & tag(tagtype(Tag_{1},\ldots,Tag_{r},[Att^{1},\ldots,Att^{m}]), \\ & [Node_{1},\ldots,Node_{s}], \\ & [Type_{1},\ldots,Type_{s}], \\ & [Doc_{1},\ldots,Doc_{s}]):- \\ & tag_{i}(Tag^{1},Node_{1},Type_{1},Doc_{1}), \\ & \ldots \\ & tag_{s}(\overline{Tag^{s}},Node_{s},Type_{s},Doc_{s}). \\ htag(xquery/xpfree) = _{def} tag \\ tagpos(xquery/xpfree) = _{def} 1 \\ \\ \hline \mathcal{P}_{\Gamma}^{\mathcal{X}} = _{def} \mathcal{P}_{\Gamma\cup\{\{\$aar,for,vxpfree\}\cup\{xqvar/xpfree\}}^{\mathcal{X}-\{xquery/xpfree\}\cup\{xqvar/xpfree\}} \\ htag(xquery/xpfree) = _{def} htag(xqvar/xpfree) \\ tagpos(xquery/xpfree) = _{def} tagpos(xqvar/xpfree) \\ tagpos(xquery/xpfree) = _{def} tagpos(xqvar/xpfree) \\ \hline \end{aligned} $	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\xquar_n\} < /tag > \\xquery/xpfree \in X \\xpfree \equiv /tag/xpfree_0 \\\{tag_1, \ldots, tag_s\} = \\\{htag (xqvar_1 /xpfree_0), \\\ldots, htag (xqvar_n /xpfree_0)\}; \\Tag_i = Tag_{p_j}^j, 1 \leq i \leq r, whenever \\tagpos(xqvar_p /xpfree_0) = tag_j, \\p \in \{1, \ldots, n\}; \\Att_l = Tag_{p_j}^j, 1 \leq l \leq s, whenever \\tagpos(xqvar_p /xpfree_0) = tag_j \\p \in \{1, \ldots, n\}; \\Att_l = Tag_{p_j}^j, 1 \leq l \leq s, whenever \\tagpos(xqvar_p /xpfree_0) = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p /xpfree_0 = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p /xpfree_0 = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p /xpfree_0 \\ends with attribute names \\xquery \equiv \\ $
$ \begin{aligned} & \{\mathcal{R}\}\cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1\leq i\leq n}\{xqvar_{i}/xpfree_{0}\}} \\ \mathcal{R} \equiv \\ & tag(tagtype(Tag_{1},\ldots,Tag_{r},[Att^{1},\ldots,Att^{m}]), \\ & [Node_{1},\ldots,Node_{s}], \\ & [Type_{1},\ldots,Type_{s}], \\ & [Doc_{1},\ldots,Doc_{s}]):- \\ & tag_{i}(Tag^{1},Node_{1},Type_{1},Doc_{1}), \\ & \ldots \\ & tag_{s}(\overline{Tag^{s}},Node_{s},Type_{s},Doc_{s}). \\ htag(xquery/xpfree) = _{def} tag \\ tagpos(xquery/xpfree) = _{def} 1 \\ \\ \hline \mathcal{P}_{\Gamma}^{\mathcal{X}} = _{def} \mathcal{P}_{\Gamma\cup\{\{\$aar,for,vxpfree\}\cup\{xqvar/xpfree\}}^{\mathcal{X}-\{xquery/xpfree\}\cup\{xqvar/xpfree\}} \\ htag(xquery/xpfree) = _{def} htag(xqvar/xpfree) \\ tagpos(xquery/xpfree) = _{def} tagpos(xqvar/xpfree) \\ tagpos(xquery/xpfree) = _{def} tagpos(xqvar/xpfree) \\ \hline \end{aligned} $	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\xqvar_n\} < /tag > \\xquery/xpfree \in \mathcal{X} \\xpfree \equiv /tag/xpfree_0 \\\{tag_1, \ldots, tag_s\} = \\\{htag (xqvar_1 / xpfree_0), \\\ldots, htag (xqvar_n / xpfree_0)\}; \\Tag_i = Tag_{p_j}^{j}, 1 \leq i \leq r, whenever \\tagpos(xqvar_p / xpfree_0) = tag_j, \\p \in \{1, \ldots, n\}; \\Att_l = Tag_{p_j}^{j}, 1 \leq l \leq s, whenever \\tagpos(xqvar_p / xpfree_0) = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p / xpfree_0) = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p / xpfree_0 = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p / xpfree_0 = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p / xpfree_0 \\ends with attribute names \\xquery \equiv \\ for \$var in vxpfree \[where C] \\return xqvar \\xquery/xpfree \in \mathcal{X} \end{array} $
$ \begin{aligned} & \{\mathcal{R}\}\cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1\leq i\leq n}\{xqvar_{i}/xpfree_{0}\}} \\ \mathcal{R} \equiv \\ & tag(tagtype(Tag_{1},\ldots,Tag_{r},[Att^{1},\ldots,Att^{m}]), \\ & [Node_{1},\ldots,Node_{s}], \\ & [Type_{1},\ldots,Type_{s}], \\ & [Doc_{1},\ldots,Doc_{s}]):- \\ & tag_{i}(Tag^{1},Node_{1},Type_{1},Doc_{1}), \\ & \ldots \\ & tag_{s}(Tag^{s},Node_{s},Type_{s},Doc_{s}). \\ htag(xquery/xpfree) = _{def} tag \\ tagpos(xquery/xpfree) = _{def} 1 \\ \\ \hline \mathcal{P}_{\Gamma}^{\mathcal{X}} = _{def} \mathcal{P}_{\Gamma\cup\{\{\$ar,for,vxpfree,C\}\}}^{\mathcal{X}-\{xquery/xpfree\}\cup\{xqvar/xpfree\}} \\ htag(xquery/xpfree) = _{def} tagpos(xquery/xpfree) \\ tagpos(xquery/xpfree) = _{def} tagpos(xquar/xpfree) \\ \hline \mathcal{P}_{\Gamma}^{\mathcal{X}} = _{def} \mathcal{P}_{\Gamma\cup\{\{\$ar,fer,vxpfree\}\cup\{xqvar/xpfree\}}^{\mathcal{X}-\{xquery/xpfree\}\cup\{xqvar/xpfree\}} \\ htag(xquery/xpfree) = _{def} tagpos(xqvar/xpfree) \\ \hline \end{pmatrix} \\ \hline \end{array}$	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\xqvar_n\} < /tag > \\xquery/xpfree \in \mathcal{X} \\xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 / xpfree_0), \\\ldots, htag (xqvar_n / xpfree_0)\}; \\Tag_i = Tag_{p_j}^j, 1 \le i \le r, whenever \\tagpos(xqvar_p / xpfree_0) = tag_j, \\p \in \{1, \ldots, n\}; \\Att_l = Tag_{p_j}^j, 1 \le l \le s, whenever \\tagpos(xqvar_p / xpfree_0) = tag_j \\p \in \{1, \ldots, n\}; \\Att_l = Tag_{p_j}^j, 1 \le l \le s, whenever \\tagpos(xqvar_p / xpfree_0) = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p / xpfree_0 \\ends with attribute names \\xquery \equiv \\for \$var in vxpfree [where C] \\return xqvar \\xquery \equiv \\ \end{array} $
$ \begin{aligned} & \{\mathcal{R}\} \cup \mathcal{P}_{\Gamma}^{\mathcal{X}-\{xquery/xpfree\}\cup_{1\leq i\leq n}\{xqvar_{i}/xpfree_{0}\}} \\ \mathcal{R} \equiv \\ & tag(tagtype(Tag_{1}, \ldots, Tag_{r}, [Att^{1}, \ldots, Att^{m}]), \\ & [Node_{1}, \ldots, Node_{s}], \\ & [Type_{1}, \ldots, Type_{s}], \\ & [Doc_{1}, \ldots, Doc_{s}]) : - \\ & tag_{i}(Tag^{1}, Node_{1}, Type_{1}, Doc_{1}), \\ & \ldots \\ & tag_{s}(\overline{Tag^{s}}, Node_{s}, Type_{s}, Doc_{s}). \\ htag(xquery/xpfree) = d_{ef} tag \\ tagpos(xquery/xpfree) = d_{ef} 1 \\ \\ \hline \mathcal{P}_{\Gamma}^{\mathcal{X}} =_{def} \mathcal{P}_{\Gamma \cup \{(\$ar, for, vxpfree, C)\}}^{\mathcal{X}-\{xquery/xpfree\} \cup \{xqvar/xpfree\}} \\ htag(xquery/xpfree) =_{def} htag(xqvar/xpfree) \\ tagpos(xquery/xpfree) =_{def} tagpos(xqvar/xpfree) \\ \hline \end{aligned} $	$ \begin{array}{l} < tag > \{xqvar_1, \ldots, \\xqvar_n\} < /tag > \\xquery /xpfree \in \mathcal{X} \\xpfree \equiv /tag/xpfree_0 \\ \{tag_1, \ldots, tag_s\} = \\ \{htag (xqvar_1 /xpfree_0), \\\ldots, htag (xqvar_n /xpfree_0)\}; \\Tag_i = Tag_{p_j}^i, 1 \le i \le r, whenever \\tagpos(xqvar_p /xpfree_0) = p_j, \\htag(xqvar_p /xpfree_0) = tag_j, \\p \in \{1, \ldots, n\}; \\Att_l = Tag_{p_j}^j, 1 \le l \le s, whenever \\tagpos(xqvar_p /xpfree_0) = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p /xpfree_0 = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p /xpfree_0 = tag_j \\p \in \{1, \ldots, n\}; \\xqvar_p xpfree_0 \\ends with attribute names \\xquery \equiv \\for \$var in vxpfree \[where C] \\return xqvar \\xquery m \\arguery m \\let \$var := vxpfree \[where C] \\ \end{array} $

% "books.xml" = $Doc(\$book, \Gamma)$ % htag(document ('books.xml') /books/book /@year) = year% htag(document ('books.xml') /books/book / title) = title% $\overline{\Gamma}_{\$year} = document ('books.xml') /books/book/$ $% <math>\$year, \$book/title \in \mathcal{X}$ $\mathcal{P}^{document('books.xml')/books/book/@year} = \emptyset$

 $\mathcal{P}^{document('books.xml')/books/book/title} = \emptyset$

$ \{\mathcal{J}^{\Gamma}\} \cup \mathcal{C}^{\Gamma} \cup \{\mathcal{R}^{\$var} \$var \in DocVars(\Gamma)\} $ $ \mathcal{P}^{\mathcal{X}}_{\Gamma} =_{def} \bigcup_{\$var \in DocVars(\Gamma),} \mathcal{P}^{\bar{\Gamma}_{\$var}/xpfree} $ (1) (1) (1) (1) - \mathcal{X} does not includes tagged elements and flur expressions	
$\mathcal{D}_{I_{\phi}}$	
$ P_{T} = d_{ef} \cup \delta var \in DocVars(I),$ (1) (and $\Pi WT expressions$	
$mnfree \in Bootedby(\$yar' X) \sqcup Bootedby(\$yar' E) $	
$\mathcal{J}^{\Gamma} \equiv \mathcal{J}^{\Gamma} = \mathcal{J}^{\Gamma} $	
ioin(Taa, Taa Node, Node)	
$\begin{bmatrix} Type_1, \dots, Type_n \end{bmatrix}, \begin{bmatrix} Doc_1, \dots, Doc_n \end{bmatrix}) : - \begin{bmatrix} -Tag_j = Tag_{p_j}^i \\ 0 & 0 \end{bmatrix}$	
$vvar_1(\overline{Tag^1}, Node_1, Type_1, Doc_1), \qquad (2) \qquad \qquad$	
$\dots \qquad \qquad$	
$vvar_n(\overline{Tag^n}, Node_n, Type_n, Doc_n),$ one p_j for each $var'/xpfree$	
$constraints(vvar_1(Tag^1),\ldots,vvar_n(Tag^n)).$	Ĵ
$\begin{bmatrix} n_{r} & - & Tag_{1}, \dots, Tag_{n}, Node, [Type_{1}, \dots, Type_{n}], doc) : - & Tag_{r}^{i}, 1 \le r \le s \\ \text{one } Tag_{n}^{i} & \text{one } Tag_{n}^{i} \end{bmatrix}$	
$tag_1(Tag_1, [Node_{11}, \dots, Node_{1k_1} NTag], Type_1, doc), (3) \qquad one \ Tag_r \\ for \ each \ \$var'/xpfree$	
····,	r
$tag_n(Tag_n, [Node_{n1}, \dots, Node_{nk_n}], NTag], Type_n, doc).$	
$ \mathcal{L} = \{$	
$constraints(Vvar_1, \dots, Vvar_n) : -$	
$lc_1^1(Vvar_1,\ldots,Vvar_n), \qquad (4) \qquad \qquad one \ rag_r \\ for \ each \ $var'/xpfree$	ar.
$lc_1^n(Vvar_1,\ldots,Vvar_n).$ $Root(\$var') = \var_i	
$\frac{ C_1(V \cup ar_1, \dots, V \cup ar_n).}{ C_j \equiv S_{var \in Vars(\Gamma), C^j \in constraints(\$var, \Gamma)} C^j} \xrightarrow{Root(\$var') = \$var_i} \frac{ Root(\$var') = \$var_i }{ G_j } - doc = Doc(\$var, \Gamma)$	
$\left\{ lc_i^2(Vvar_1,\ldots,Vvar_n):-\right. \\ \left -tag_i=htag(\overline{\Gamma}_{\$var}/xpfred)\right\} \\ \left -tag_i=htag(\overline{\Gamma}_{xvar}/xpfred)\right\} \\ \left -tag_i=htag(\overline{\Gamma}_{xvar}/xpfred)\right\}$	ee)
$c_i^j(Vvar_1,\ldots,Vvar_n), lc_{i+1}^j(Vvar_1,\ldots,Vvar_n).$	
$ 1 \le i \le n, Op_i = \text{and} $ $var = Root(\$var')$	
$\cup \qquad (5) -Node = [N_1, \dots, N_n]$	
$\{lc_i^j(Vvar_1,\ldots,Vvar_n): -c_i^j(Vvar_1,\ldots,Vvar_n). $ $N_i = [Node_{ik_i} NTag]$	
$lc_i^j(Vvar_1,\ldots,Vvar_n): -lc_{i+1}^j(Vvar_1,\ldots,Vvar_n). \qquad if (\$var', for, vxpfree)$	2,
$ 1 \le i \le n, Op_i = \text{or} \} $ $C) \in \Gamma$ $N_i = NTag$	
$\bigcup_{\{c_i^j \mid C^j \equiv c_1^j O_{p_1} \dots, O_{p_n} c_n^j\}} \{C_i^j\} \qquad \qquad$	
$\frac{\left \frac{(c_i + c_i + c_i)}{C_i}\right ^2}{\left \frac{c_i + c_i}{C_i}\right ^2} + \frac{(c_i + c_i + c_i)}{(c_i + c_i)}\right ^2} + \frac{(c_i + c_i)}{(c_i + c_i)} + \frac{(c_i + c_i)}{(c_i +$	
$\frac{whenever c_i^j \equiv \$var'/xpfree_j \ Op \ value}{and \ Root(\$var') = \$var_k} \qquad \qquad \frac{DocVars(I');}{(5) \ \{\$var_1, \dots, \$var_n\} = }$	
$D = V = C(\Gamma)$	
$C_i \equiv C_i(vvar(1ag^2), \dots, vvar(1ag^n)) : -Op(1ag_j, 1ag_r).$	
whenever $c_i \equiv \delta var / xpjree_j Op \delta var / xpjree_r$, $DocVars(\Gamma)$.	
$\frac{Root(\$var') = \$var_k \text{ and } Root(\$var') = \$var_m (6)}{(7) \text{ for every } \$var \in Vars}$	
$htag(\$var/xpfree_j) =_{def} join \\ tagg(\$var/xpfree_j) =_{def} join \\ tagg(\$var/xpfree_j) =_{def} join \\ (7)$	
$ \underline{tagpos(\$var/xpfree_j) =_{def} j (7)} \qquad \qquad$)

Table 3. Translation of XQuery into Logic Programming (cont'd)

Basically, the translation of XQuery expressions produces new rules (in the example mybook) having the form of "views" in which a "join" of documents is achieved (the join predicate makes the join). The join combines the values for local variables whose value is the root of the input documents (in the example \$book whose value is computed by vbook). The join also takes into account the constraints on these local variables (predicate constraints). Finally, for these local variables the set of required paths is computed. In the example, there is a local variable \$book whose value is the root of the document, and title and year are the required paths computed by vbook.

Now, we can build the goal for obtaining the answer for xquery as follows. Taking htag(xquery) = mybook and tagpos(xquery) = 1 then the goal is : -mybook(MyBook, Node, Type, Doc) and the answer is: $\begin{array}{l} MyBook = mybooktype("XML \ in \ Scottland", ["2002"]), \ Node = [[[1,2], [1,2]]] \\ Type = [[[3,3]]], \ Doc = [["books.xml"]] \end{array}$

This answer represents the XML document:

Answer as an XML document <mybook year="2002">
 </mybook year="2002">
 </mybook>

Let us remark that the output document is not numbered as the source documents. The join of several documents with different node and type numbering produces an unique output document. However, the output document is still indexed and typed by considering the list of node and type numbers of the input documents. In the example the first [1,2] represents the node number of the book titles, and the second [1,2] represents the node number of the book years. Analogously, the first "3" represents the type number of book titles and the second "3" the type number of book years. The numbering of output documents still allows the recovering of the hierarchical structure by considering the lexicographic order in lists. Due to the lack of space we omit here the details about the reconstruction of output documents.

5 Conclusions and Future Work

In this paper, we have studied how to translate XQuery expressions into logic programming. It allow us to evaluate XQuery expressions against XML documents using logic rules. As future work we would like to implement our technique. We have already implemented XPath in logic programming (see http://indalog.ual.es/Xindalog). Taking as basis this implementation we would like to extend it to XQuery expressions.

References

- [ABE06] J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-Baños. Magic sets for the XPath language. *Journal of Universal Computer Science*, 12(11):1651–1678, 2006.
- [ABE07] J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-Baños. Querying XML documents in logic programming. To appear in Theory and Practice of Logic Programming, available at http://www. ual.es/~jalmen, 2007.
- [BBFS05] James Bailey, Francis Bry, Tim Furche, and Sebastian Schaffert. Web and Semantic Web Query Languages: A Survey. In *Reasoning Web, First International Summer School*, volume 3564, pages 35–133. LNCS, 2005.
- [BCF05] Veronique Benzaken, Giuseppe Castagna, and Alain Frish. CDuce: an XML-centric general-purpose language. In Procs of the ACM ICFP, pages 51–63. ACM Press, 2005.
- [BGvK⁺05] Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rittinger, and Jens Teubner. Pathfinder: XQuery - The Relational Way. In Procs. of the VLDB, pages 1322–1325. ACM Press, 2005.

- [Bol00] H. Boley. Relationships between logic programming and XML. In Proceedings of the Workshop on Logic Programming, 2000.
- [Bol01] H. Boley. The Rule Markup Language: RDF-XML Data Model, XML Schema Hierarchy, and XSL Transformations. In Proc. of International Conference on Applications of Prolog, INAP, pages 124–139. Prolog Association of Japan, 2001.
- [CDF⁺04] D. Chamberlin, Denise Draper, Mary Fernández, Michael Kay, Jonathan Robie, Michael Rys, Jerome Simeon, Jim Tivy, and Philip Wadler. XQuery from the Experts. Addison Wesley, 2004.
- [CF03] Jorge Coelho and Mario Florido. Type-based XML processing in logic programming. In *Proceedings of the PADL 2003*, pages 273–285. LNCS 2562, 2003.
- [CH01] D. Cabeza and M. Hermenegildo. Distributed WWW Programming using (Ciao-)Prolog and the PiLLoW Library. *TPLP*, 1(3):251–282, 2001.
- [Cha02] D. Chamberlin. XQuery: An XML Query Language. IBM Systems Journal, 41(4):597–615, 2002.
- [HP03] H. Hosoya and B. C. Pierce. XDuce: A Statically Typed XML Processing Language. ACM Transactions on Internet Technology, TOIT, 3(2):117– 148, 2003.
- [May04] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML Data Manipulation Language. Theory and Practice of Logic Programming, TPLP, 4(3):239–287, 2004.
- [MS03] A. Marian and J. Simeon. Projecting XML Documents. In Procs. of VLDB, pages 213–224. Morgan Kaufmann, 2003.
- [OOP⁺04] Patrick O'Neil, Elizabeth O'Neil, Shankar Pal, Istvan Cseri, Gideon Schaller, and Nigel Westbury. ORDPATHs: insert-friendly XML node labels. In Procs. of the ACM SIGMOD, pages 903 – 908. ACM Press, 2004.
- [SB02] S. Schaffert and F. Bry. A Gentle Introduction to Xcerpt, a Rule-based Query and Transformation Language for XML. In *Proc. of RuleML*, 2002.
- [Sei02] D. Seipel. Processing XML-Documents in Prolog. In Procs. of the Workshop on Logic Programming 2002, 2002.
- [Thi02] Peter Thiemann. A typed representation for HTML and XML documents in Haskell. *Journal of Functional Programming*, 12(4&5):435–468, 2002.
- [TVB⁺02] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasundaram, Eugene Shekita, and Chun Zhang. Storing and querying ordered xml using a relational database system. In *Procs of the ACM SIGMOD*, pages 204–215. ACM Press, 2002.
- [W3C07a] W3C. XML Path language (XPath) 2.0. Technical report, www.w3.org, 2007.
- [W3C07b] W3C. XQuery 1.0: An XML Query Language. Technical report, www.w3.org, 2007.
- [Wad02] P. Wadler. XQuery: A Typed Functional Language for Querying XML. In Advanced Functional Programming, 4th International School, AFP, LNCS 2638, pages 188–212. Springer, 2002.
- [Wie05] J. Wielemaker. SWI-Prolog SGML/XML Parser, Version 2.0.5. Technical report, Human Computer-Studies (HCS), University of Amsterdam, March 2005.
- [WR99] Malcolm Wallace and Colin Runciman. Haskell and XML: Generic combinators or type-based translation? In Proceedings of the International Conference on Functional Programming, pages 148–159. ACM Press, 1999.