
Integrating XQuery and Logic Programming?

Jesús M. Almendros-Jiménez, Antonio Becerra-Terón
and Francisco J. Enciso-Baños

Dpto. Lenguajes y Computación.
Universidad de Almeŕıa. {jalmen,abecerra,fjenciso}@ual.es

Abstract. In this paper we investigate how to integrate the XQuery
language and logic programming. With this aim, we represent XML doc-
uments by means of a logic program. This logic program represents the
document schema by means of rules and the document itself by means
of facts. Now, XQuery expressions can be integrated into logic program-
ming by considering a translation from for-let-where-return expressions
into logic rules and a goal.

1 Introduction

XQuery [W3C07b,CDF+04,Wad02,Cha02] is a typed functional language de-
voted to express queries against XML documents. It contains XPath 2.0 [W3C07a]
as a sublanguage. XPath 2.0 supports navigation, selection and extraction of
fragments from XML documents. XQuery also includes expressions to construct
new XML values and to join multiple documents. The design of XQuery has been
influenced by group members with expertise in the design and implementation
of other high-level languages. XQuery has static typed semantics and a formal
semantics which is part of the W3C standard [CDF+04,W3C07b].

The integration of declarative programming and XML data processing is a
research field of increasing interest in the last years (see [BBFS05] for a survey).
There are proposals of new languages for XML data processing based on func-
tional, and logic programming. In addition, XPath and XQuery have been also
implemented in declarative languages.

The most relevant contribution is the Galax project [MS03,CDF+04], which is
an implementation of XQuery in functional programming, using OCAML as host
language. There are also proposals for new languages based on functional pro-
gramming rather than implementing XQuery. This is the case of XDuce [HP03]
and CDuce [BCF05], which are languages for XML data processing, using regu-
lar expression pattern matching over XML trees, subtyping as basic mechanism,
and OCAML as host language. The CDuce language does fully statically-typed
transformation of XML documents, thus guaranteeing correctness. In addition,
there are proposals around Haskell for the handling of XML documents, such as
HaXML [Thi02] and [WR99].

? This work has been partially supported by the EU (FEDER) and the Spanish MEC
under grant TIN2005-09207-C03-02.

There are also contributions in the field of use logic programming for the
handling of XML documents. For instance, the Xcerpt project [SB02] proposes a
pattern and rule-based query language for XML documents, using the so-called
query terms including logic variables for the retrieval of XML elements. For
this new language a specialized unification algorithm for query terms has been
studied. Another contribution of a new language is XPathLog (the LOPIX sys-
tem) [May04] which is a Datalog-style extension of XPath with variable bindings.
This is also the case of XCentric [CF03], which can represent XML documents
by means of logic programming, and handles XML documents by considering
terms with functions of flexible arity and regular types. Finally, FNPath [Sei02]
is a proposal for using Prolog as query language for XML documents based
on a field-notation, for evaluating XPath expressions based on DOM. The Rule
Markup Language (RULEML) [Bol01,Bol00] is a different kind of proposal in
the research area. The aim of the approach is the representation of Prolog facts
and rules into XML documents, and thus, the introduction of rule systems into
the Web. Finally, some well-known Prolog implementations include libraries for
loading and querying XML documents, such as SWI-Prolog [Wie05] and CIAO
[CH01].

In this paper, we investigate how to integrate the XQuery language and logic
programming. With this aim:
1. A XML document can be seen as a logic program, by considering facts and

rules for expressing both the XML schema and document. This approach
was already studied in our previous work [ABE07,ABE06].

2. A XQuery expression can be translated into logic programming by considering
a set of rules and a specific goal. Taking as starting point the translation
of XPath of our previous work [ABE07,ABE06], the translation of XQuery
introduces new rules for the join of documents, and for the translation of for-
let-where-return expressions into logic programming. In addition, a specific
goal is generated for obtaining the answer to an XQuery query.

3. Our technique allows the handling of XML documents as follows. Firstly,
the XML documents are loaded. It involves the translation of the XML
documents into a logic program. For efficiency reasons the rules, which cor-
respond to the XML document structure, are loaded in main memory, but
facts, which represent the values of the XML document, are stored in sec-
ondary memory, whenever they do not fit in main memory (using appropriate
indexing techniques). Secondly, the user can now write queries against the
loaded documents. Now, XQuery queries are translated into a logic program
and a specific goal. The evaluation of such goal uses the indexing in order to
improve the efficiency of query solving. Finally, the answer of the goal can
be represented by means of an output XML document.

As far as we know, this is the first time that XQuery is implemented in
logic programming. Previous proposals either define new query languages for
XML documents in logic and functional programming or implement XQuery,
but in functional programming. The advantages of such proposal is that XQuery
is embedded into logic programming, and thus XQuery can be combined with

logic programs. For instance, logic programming can be used as inference engine,
one of the requirements of the so-called Semantic Web (http://www.w3.org/
2001/sw/), in the line of RuleML.

Our proposal requires the representation of XML documents into logic pro-
gramming, which can be compared with those ones representing XML documents
in logic programming (for instance, [SB02,CF03]) and, with those ones represent-
ing XML documents in relational databases (for instance, [BGvK+05]). In our
case, rules are used for expressing the structure of well-formed XML documents,
and XML elements are represented by means of facts. Moreover, our handling
of XML documents is more ”database-oriented” since we use secondary memory
and file indexing for selective reading of records. The reason for such decision is
that XML documents can usually be too big for main memory [MS03]. Our pro-
posal uses as basis the implementation of XPath in logic programming studied
in our previous work [ABE07]. In addition, we have studied how to consider a
bottom-up approach to the same proposal of [ABE07] in [ABE06].

The structure of the paper is as follows. Section 2 will present the trans-
lation of XML documents into Prolog; section 3 will review the translation of
XPath into logic programming; section 4 will provide the new translation of
XQuery expressions into logic programming; and finally, section 5 will conclude
and present future work. A more complete version of our paper (with a bigger
set of examples) can be found in http://www.ual.es/∼jalmen.

2 Translating XML Documents into Logic Programming

In order to define our translation we need to number the nodes of the XML
document. A similar numbering has been already adopted in some proposals for
representing XML in relational databases [OOP+04,TVB+02,BGvK+05].

Given an XML document, we can consider a new XML document called
node-numbered XML document as follows. Starting from the root element num-
bered as 1, the node-numbered XML document is numbered using an attribute
called nodenumber1 where each j -th child of a tagged element is numbered
with the sequence of natural numbers i1it .j whenever the parent is num-
bered as i1it : < tag att1 = v1, . . . , attn = vn,nodenumber= i1. it.j >
elem1, . . . , elems < /tag >. This is the case of tagged elements. If the j-th child
is of a basic type (non tagged) and the parent is an inner node, then the element
is labeled and numbered as follows: < unlabeled nodenumber = i1.it.j >
elem < /unlabeled >; otherwise the element is not numbered. It gives to us
a hierarchical and left-to-right numbering of the nodes of an XML document.
An element in an XML document is further left in the XML tree than another
when the node number is smaller w.r.t. the lexicographic order of sequence of
natural numbers. Any numbering that identifies each inner node and leaf could
be adapted to our translation.

In addition, we have to consider a new document called type and node-
numbered XML document numbered using an attribute called typenumber as
1 It is supposed that ”nodenumber” is not already used as attribute in the tags of the

original XML document.

follows. Starting the numbering from 1 in the root of the node-numbered XML
document, each tagged element is numbered as: < tag att1 = v1, . . . , attn =
vn, nodenumber = i1. . . . , it.j, typenumber = k > elem1, . . . , elems < /tag >.
The type number k of the tag is equal to l + n + 1 whenever the type number
of the parent is l, and n is the number of tagged elements weakly distinct 2

occurring in leftmost positions at the same level of the XML tree 3.
Now, the translation of the XML document into a logic program is as follows.

For each inner node in the type and node numbered XML document < tag att1 =
v1, . . . , attn = vn, nodenumber = i, typenumber = k > elem1, . . . , elems <
/tag > we consider the following rule, called schema rule:

Schema Rule in Logic Programming
tag(tagtype(Tagi1 , . . . ,Tagit , [Att1 , . . . ,Attn]),NTag , k ,Doc):-

tagi1 (Tagi1 , [NTagi1 |NTag], r ,Doc),
. . .,
tagit (Tagit , [NTagit |NTag], r ,Doc),
att1 (Att1 ,NTag , r ,Doc),
. . .,
attn(Attn ,NTag , r ,Doc).

where tagtype is a new function symbol used for building a Prolog term containing
the XML document; {tagi1 , . . . , tagit}, ij ∈ {1, . . . , s}, 1 ≤ j ≤ t, is the set of
tags of the tagged elements elem1, . . . , elems; Tagi1 , . . . , Tagit are variables;
att1, . . . , attn are the attribute names; Att1, . . . , Attn are variables, one for each
attribute name; NTagi1 , . . . , NTagit are variables (used for representing the
last number of the node number of the children); NTag is a variable (used for
representing the node number of tag); k is the type number of tag; and finally,
r is the type number of the tagged elements elem1, . . . , elems

4.
In addition, we consider facts of the form: attj (vj , i , k , doc) (1 ≤ j ≤ n),

where doc is the name of the document. Finally, for each leaf in the type and
node numbered XML document: < tag nodenumber = i, typenumber = k >
value < /tag >, we consider the fact : tag(value, i , k , doc). For instance, let us
consider the following XML document called ”books.xml”:

XML document
<books>

<book year=”2003”>
<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</author>
<title>Data on the Web</title>
<review>A fine book.</review>

</book>

2 Two elements are weakly distinct whenever they have the same tag but not the same
structure.

3 In other words, type numbering is done by levels and in left-to-right order, but each
occurrence of weakly distinct elements increases the numbering in one unit.

4 Let us remark that since tag is a tagged element, then elem1, . . . , elems have been
tagged with ”unlabeled” labels in the type and node numbered XML document when
they were not labeled; thus they must have a type number.

<book year=”2002”>
<author>Buneman</author>
<title>XML in Scotland</title>
<review>The best ever!</review>

</book>
</books>

Now, the previous XML document can be represented by means of a logic pro-
gram as follows:

Translation into Prolog of an XML document
Rules (Schema):
—————————————
books(bookstype(Book, []), NBooks,1,Doc) :-

book(Book, [NBook|NBooks],2,Doc).
book(booktype(Author, Title, Review, [Year]),

NBook ,2,Doc) :-
author(Author, [NAu|NBook],3,Doc),
title(Title, [NTitle|NBook],3,Doc),
review(Review, [NRe|NBook],3,Doc),
year(Year, NBook,3,Doc).

Facts (Document):
——————————————
year(’2003’, [1, 1], 3,”books.xml”).
author(’Abiteboul’, [1, 1, 1], 3,”books.xml”).
author(’Buneman’, [2,1, 1], 3,”books.xml”).
author(’Suciu’, [3,1,1], 3,”books.xml”).
title(’Data on the Web’, [4, 1, 1], 3,”books.xml”).
unlabeled(’A’, [1, 5, 1, 1], 4,”books.xml”).
em(’fine’, [2, 5, 1, 1], 4,”books.xml”).

review(reviewtype(Un,Em,[]),NReview,3,Doc):-
unlabeled(Un,[NUn|NReview],4,Doc),
em(Em,[NEm|NReview],4,Doc).

review(reviewtype(Em,[]),NReview,3,Doc):-
em(Em,[NEm|NReview],5,Doc).

em(emtype(Unlabeled,Em,[]),NEms,5,Doc) :-
unlabeled(Unlabeled,[NUn|NEms],6,Doc),
em(Em, [NEm|NEms],6,Doc).

unlabeled(’book.’, [3, 5, 1, 1], 4,”books.xml”).
year(’2002’, [2, 1], 3,”books.xml”).
author(’Buneman’, [1, 2, 1], 3,”books.xml”).
title(’XML in Scotland’, [2, 2, 1], 3,”books.xml”).
unlabeled(’The’, [1, 1, 3, 2, 1], 6,”books.xml”).
em(’best’, [2, 1, 3, 2, 1], 6,”books.xml”).
unlabeled(’ever!’, [3, 1, 3, 2, 1], 6,”books.xml”).

Here we can see the translation of each tag into a predicate name: books, book ,
etc. Each predicate has four arguments, the first one, used for representing the
XML document structure, is encapsulated into a function symbol with the same
name as the tag adding the suffix type. Therefore, we have bookstype, booktype,
etc. The second argument is used for numbering each node; the third argument of
the predicates is used for numbering each type; and the last argument represents
the document name. The key element of our translation is to be able to recover
the original XML document from the set of rules and facts.

3 Translating XPath into Logic Programming

In this section, we present how XPath expressions can be translated into a logic
program. Here we present the basic ideas, a more detailed description can be
found in [ABE07].

We restrict ourselves to XPath expressions of the form xpathexpr = /expr1

. . . /exprn where each expri can be a tag or a boolean condition of the form
[xpathexpr = value], where value has a basic type. More complex XPath queries
[W3C07a] will be expressed in XQuery, and therefore they will be translated in
next section.

With the previous assumption, each XPath expression xpathexpr = /expr1

. . . /exprn defines a free of equalities XPath expression, denoted by FE(xpathexpr).
This free of equalities XPath expression defines a subtree of the XML document,
in which is required that some paths exist (occurences of boolean conditions
[xpathexpr]). For instance, with respect to the XPath expression /books/book

[author = Suciu]/title, the free of equalities XPath expression is /books/book
[author] /title and the subtree of the type and node numbered XML document
which corresponds with the expression /books/book [author]/title is as follows:

Subtree defined by a Free of Equalities XPath Expression
<books nodenumber=1, typenumber=1>
<book year=”2003”, nodenumber=1.1, typenumber=2>
<author nodenumber=1.1.1 typenumber=3>Abiteboul</author>
<author nodenumber=1.1.2 typenumber=3>Buneman</author>
<author nodenumber=1.1.3 typenumber=3>Suciu</author>
<title nodenumber=1.1.4 typenumber=3>Data on the Web</title>
</book>
<book year=”2002” nodenumber=1.2, typenumber=2>
<author nodenumber=1.2.1 typenumber=3>Buneman</author>
<title nodenumber=1.2.2 typenumber=3>XML in Scotland</title>
</book>
</books>

Now, given a type and node numbered XML document D, a program P rep-
resenting D, and an XPath expression xpathexpr then the logic program obtained
from xpathexpr is Pxpathexpr, obtained from P taking the schema rules and facts
for the subtree of D defined by FE(xpathexpr). For instance, with respect to
the above example, the schema rules defined by /books/book [author]/title are:

Translation into Prolog of an XPath Expression
books(bookstype(Book, []), NBooks, 1,Doc):-

book(Book, [NBook|NBooks], 2,Doc).
book(booktype(Author,Title,Review,[Year]),NBook,2,Doc) :-

author(Author,[NAuthor|NBook],3,Doc),
title(Title,[NTitle|NBook],3,Doc).

and the facts, the set of facts for title and author. Let us remark that in practice,
these rules can be obtained from the schema rules by removing predicates, that
is, removing the predicates in the schema rules which are not tags in the free of
equalities XPath expression.

Now, given a type and node numbered XML document, and an XPath ex-
pression xpathexpr, the goals obtained from xpathexpr are defined as follows.
Firstly, each XPath expression xpathexpr can be mapped into a set of prolog
terms, denoted by PT (xpathexpr), representing the pattern of the query 5. Ba-
sically, the pattern represents the required structure of the record. Now, the
goals are defined as: {: −tag(Tag,Node, r, doc) {Tag → t }| t ∈ PT (xpathexpr),
r is a type number of tag for t} where tag is the leftmost tag in xpathexpr with
a boolean condition (and it is the rightmost tag whenever boolean conditions do
not exist); Tag and Node are variables; and doc is the document name.

For instance, with respect to /books/book [author = Suciu]/title, PT (/books/
book [author = Suciu]/title) = {booktype(′Suciu ′,Title,Review , [Year])}, and
therefore the (unique) goal is : −book(booktype(′Suciu ′,Title,Review ,Year),Node,
2, ”books.xml”).

We will call to the leftmost tag with a boolean condition the head tag
of xpathexpr and is denoted by htag(xpathexpr). In the previous example,
htag(/books/book[author = Suciu]/title) = book.
5 Due to XML records can have different structure, one pattern is generated for each

kind of record.

In summary, the handling of an XPath query involves the ”specialization” of
the schema rules of the XML document and the generation of one or more goals.
The goals are obtained from the leftmost tag with a boolean condition on the
XPath expression. Obviously, instead of a set of goals for each XPath expression,
a unique goal can be considered by adding new rules. In the following we will
assume this case.

4 Translating XQuery into Logic Programming

Similarly to XPath, an XQuery expression is translated into a logic program and
generates a specific goal. We focus on the XQuery core language, whose grammar
can be defined as follows.

Core XQuery
xquery:= dxpfree| < tag >′ {′xquery, . . . , xquery′}′ < /tag > |flwr.
dxpfree:= document(doc) ’/’ xpfree.
flwr:= for $var in vxpfree [where constraint] return xqvar

| let $var := vxpfree [where constraint] return xqvar.
xqvar:= vxpfree| < tag >′ {′xqvar , . . . , xqvar ′}′ < /tag > |flwr.
vxpfree:= $var | $var ’/’ xpfree | dxpfree.
Op:= <= | >= | < | > | =.
constraint := vxpfree Op value | vxpfree Op vxpfree

| constraint ’or’ constraint | constraint ’and’ constraint.

where value is an XML document, doc is a document name, and xpfree is
a free of equalities XPath expression. Let us remark that XQuery expressions
use free of equalities XPath expressions, given that equalities can be always
introduced in where expressions. Finally, we will say that an XQuery expression
ends with attribute name in the case of the XQuery expression has the form
vxpfree and the rightmost element has the form @att, where att is an attribute
name. The translation of an XQuery expression consists of three elements.

• Firstly, for each XQuery expression xquery, we can define analogously to
XPath expressions, the so-called head tag, denoted by htag(xquery), which
is the predicate name used for the building of the goal (or subgoal whenever
the expression xquery is nested).

• Secondly, for each XQuery expression xquery, we can define the so-called
tag position, denoted by tagpos(xquery), representing the argument of the
head tag (i.e. the argument of the predicate name) in which the answer is
retrieved.

• Finally, for each XQuery expression xquery we can define a logic program
Pxquery and a specific goal.

In other words, each XQuery expression can be mapped in the translation
into a program Pxquery and into a goal of the form : −tag(Tag1, . . . , Tagn,
Node, Type,Docs) where tag is the head tag, and Tagpos represents the answer
of the query, where pos = tagpos(xquery). In addition, Node and Type represent
the node and type numbering of the output document, and Docs represents the
documents involved in the query. The above elements are defined in Tables 2
and 3 for each case, assuming the notation of Table 1.

Table 1. Notation

V ars(Γ) = {$var|($var, let, vxpfree, C) ∈ Γ or ($var, for, vxpfree, C) ∈ Γ};
Doc($var, Γ) = doc whenever Γ̄$var = document(doc)/xpfree;

DocV ars(Γ) = {$var|($var, let, dxpfree, C) ∈ Γ or ($var, for, dxpfree, C) ∈ Γ};
Γ$var = vxpfree whenever ($var, let, vxpfree, C) or ($var, for, vxpfree, C) ∈ Γ ;

Γ̄$var = vxpfree[λ1 · . . . · λn] where λi = {$vari → Γ$vari
} and

{$var1, . . . , $varn} = V ars(Γ);

Root($var) = $var′ whenever $var ∈ DocV ars(Γ) and $var = $var′

or ($var, let, $var′′/xpfree, C) ∈ Γ or ($var, for, $var′′/xpfree, C) ∈ Γ
and Root($var′′) = $var′;

Rootedby($var,X) = {xpfree|$var/xpfree ∈ X};
Rootedby($var, Γ) = {xpfree|$var/xpfree Op vxpfree ∈ C

or $var/xpfree Op value ∈ C, C ∈ Constraints($var, Γ)}; and

Constraints($var, Γ) = {Ci|C ≡ C1 Op . . . Op Cn,
($var, let, vxpfree, C) ∈ Γ or ($var, for, vxpfree, C) ∈ Γ}

4.1 Examples

Let us suppose a query requesting the year and title of the books published
before 2003.

xquery = for $book in document (’books.xml’)/books/book
return let $year := $book/@year
where $year<2003
return <mybook>{$year, $book/title}</mybook>

For this query, the translation is as follows:

Pxquery = Pxquery2
(book,for,document(′books.xml′)/books/book,∅) =

Pxquery3
(book,for,document(′books.xml′)/books/book,∅),($year,let,$book/@year,$year<2003)

=

{R} ∪ P$year,$book/title

(book,for,document(′books.xml′)/books/book,∅),($year,let,$book/@year,$year<2003)
R =

mybook(mybooktype(Title, [Y ear]), [Node], [Type], [Doc]) : −
join(Title, Y ear, Node, Type, Doc).

% {join} = {htag($year), htag($book/title)};
% tagpos($year) = 1 and tagpos($book/title) = 2

P$year,$book/title

($book,for,document(′books.xml′)/books/book,∅),($year,let,$book/@year,$year<2003)
=

{J Γ } ∪ CΓ ∪ {R$book}

∪Pdocument(′books.xml′)/books/book/@year ∪ Pdocument(′books.xml′)/books/book/title

J Γ =
join(Title, Y ear, [Node], [Type], [Doc]) : −

vbook(Title, Y ear, Node, Type, Doc),
constraints(vbook(Title, Y ear)).

% DocV ars(Γ) = {$book}, $year, $book/title ∈ X
% Root($year) = $book, Root($book) = $book.

CΓ =

constraints(V book) : −lc1
1(V book).

lc1
1(V book) : −c1

1(V book).
c1
1(vbook(Title, Y ear)) : −leq(Y ear, 2003).

% C1 ≡ c1
1, c1

1 ≡ $year < 2003
% C1 ∈ constraints($year, Γ) and Root($year) = $book

R$book =
vbook(Title, Y ear, [Node, Node], [TTitle, TY ear],′ books.xml′) : −

title(Title, [NTitle|Node], TT itle,′ books.xml′),
year(Y ear, Node, TY ear,′ books.xml′).

Table 2. Translation of XQuery into Logic Programming

Pdocument(doc)/xpfree =def Pxpfree

htag(document(doc)/xpfree) =def htag(xpfree)
tagpos(document(doc)/xpfree) =def tagpos(xpfree)

P<tag>{xquery 1,...,xquery n}</tag> =def

{R} ∪1≤i≤n Pxqueryi

R ≡
tag(tagtype(Tag1

p1
, . . . , Tagk

pk
, [Att1

q1
, . . . , Atts

qs
]),

[NTag1 , . . . , NTagk , NAtt1 , . . . , NAtts],
[TTag1 , . . . , TTagk , TAtt1 , . . . , TAtts],
[DTag1 , . . . , DTagk , DAtt1 , . . . , DAtts]) : −
tag1 (Tag1 , NTag1 , TTag1 , DTag1),
. . .

tagk (Tagk , NTagk , TTagk , DTagk),

att1 (Att1 , NAtt1 , TAtt1 , DAtt1),
. . .

atts(Atts , NAtts , TAtts , DAtts).

htag(xquery) =def tag, tagpos(xquery) =def 1

Tagt 1 ≤ t ≤ k,
denotes Tagt

1, . . . , Tagt
r

where r is the arity of tagt;

Attj 1 ≤ j ≤ s,

denotes Attj
1, . . . , Attj

s
where s is the arity of attj ;
htag(xqueryj) = atti, 1 ≤ i ≤ s,
for some j ∈ {1, . . . , n}
which ends with attribute names,
htag(xqueryj) = tagt, 1 ≤ t ≤ k,
otherwise
tagpos(xqueryj) = qi and
tagpos(xqueryj) = pt

in the same cases.

Pfor $var in vxpfree [where C] return xqvar =def

Pxqvar
{($var,for,vxpfree,C)}

htag (xquery) =def htag(xqvar)
tagpos(xquery) =def tagpos(xqvar)

Plet $var := vxpfree [where C] return xqvar =def

Pxqvar
{($var,let,vxpfree,C)}

htag (xquery) =def htag(xqvar)
tagpos(xquery) =def tagpos(xqvar)

PXΓ =def

{R}∪ P
X−{xquery/xpfree}∪1≤i≤n{xqvari/xpfree0}
Γ

R ≡
tag(tagtype(Tag1 , . . . , Tagr , [Att1 , . . . , Attm]),

[Node1 , . . . , Nodes],
[Type1 , . . . , Types],
[Doc1 , . . . , Docs]) : −
tag1 (Tag1 , Node1 , Type1 , Doc1),
. . .

tags(Tags , Nodes , Types , Docs).
htag(xquery/xpfree) =def tag
tagpos(xquery/xpfree) =def 1

xquery ≡
< tag > {xqvar1, . . . ,
xqvarn} < /tag >
xquery/xpfree ∈ X
xpfree ≡ /tag/xpfree0
{tag1, . . . , tags} =
{htag (xqvar1 /xpfree0),
. . . , htag (xqvarn /xpfree0)};
Tagi = Tagj

pj
, 1 ≤ i ≤ r, whenever

tagpos(xqvarp /xpfree0) = pj ,
htag(xqvarp /xpfree0) = tagj ,
p ∈ {1, . . . , n};
Attl = Tagj

pj
1 ≤ l ≤ s, whenever

tagpos(xqvarp /xpfree0) = pj ,
htag(xqvarp /xpfree0) = tagj

p ∈ {1, . . . , n}
xqvarp /xpfree0
ends with attribute names

PXΓ =def PX−{xquery/xpfree}∪{xqvar/xpfree}
Γ∪{($var,for,vxpfree,C)}

htag(xquery/xpfree) =def htag(xqvar/xpfree)
tagpos(xquery/xpfree) =def tagpos(xqvar/xpfree)

xquery ≡
for $var in vxpfree [where C]
return xqvar
xquery/xpfree ∈ X

PXΓ =def PX−{xquery/xpfree}∪{xqvar/xpfree}
Γ∪{($var,let,vxpfree,C)}

htag(xquery/xpfree) =def htag(xqvar/xpfree)
tagpos(xquery/xpfree) =def tagpos(xqvar/xpfree)

xquery ≡
let $var := vxpfree [where C]
return xqvar
xquery/xpfree ∈ X

% ”books.xml” = Doc($book, Γ)
% htag(document (′books.xml′) /books/book /@year) = year
% htag(document (′books.xml′) /books/book /title) = title

% Γ $year = document (′books.xml′) /books/book/

% Γ $book = document (′books.xml′) /books/book/
% $year, $book/title ∈ X

Pdocument(′books.xml′)/books/book/@year = ∅
Pdocument(′books.xml′)/books/book/title = ∅

Table 3. Translation of XQuery into Logic Programming (cont’d)

PXΓ =def

{J Γ } ∪ CΓ ∪ {R$var|$var ∈ DocV ars(Γ)}S
$var ∈ DocV ars(Γ),

$var = Root($var′),

xpfree ∈ Rootedby($var′,X) ∪ Rootedby($var′, Γ)

PΓ̄$var/xpfree
(1)

J Γ ≡
join(Tag1, . . . , Tagm, [Node1, . . . , Noden],

[Type1, . . . , Typen], [Doc1, . . . , Docn]) : −
vvar1(Tag1, Node1, Type1, Doc1),
. . .

vvarn(Tagn, Noden, Typen, Docn),

constraints(vvar1(Tag1), . . . , vvarn(Tagn)).

(2)

R$var ≡
vvar(Tag1, . . . , Tagn, Node, [Type1, . . . , Typen], doc) : −

tag1(Tag1, [Node11, . . . , Node1k1 |NTag], Type1, doc),
. . . ,
tagn(Tagn, [Noden1, . . . , Nodenkn |NTag], Typen, doc).

(3)

CΓ ≡ {
constraints(V var1, . . . , V varn) : −

lc1
1(V var1, . . . , V varn),

. . .
lcn

1 (V var1, . . . , V varn).

} ∪$var∈V ars(Γ),Cj∈constraints($var,Γ) C
j

(4)

Cj ≡
{lcj

i (V var1, . . . , V varn) : −
cj

i (V var1, . . . , V varn), lcj
i+1(V var1, . . . , V varn).

| 1 ≤ i ≤ n, Opi = and}
∪
{lcj

i (V var1, . . . , V varn) : −cj
i (V var1, . . . , V varn).

lcj
i (Vvar1 , . . . , Vvarn) : −lcj

i+1 (Vvar1 , . . . , Vvarn).
| 1 ≤ i ≤ n, Opi = or}

∪
{c

j
i
|Cj≡c

j
1Op1...,Opnc

j
n}
{Cj

i }

(5)

Cj
i ≡ cj

i (vvar1(Tag1), . . . , vvarn(Tagn)) : −Op(Tagk
j , value).

whenever cj
i ≡ $var′/xpfreej Op value

and Root($var′) = $vark

Cj
i ≡ cj

i (vvar(Tag1), . . . , vvar(Tagn)) : −Op(Tagk
j , Tagm

r).

whenever cj
i ≡ $var′/xpfreej Op $var′/xpfreer,

Root($var′) = $vark and Root($var′) = $varm (6)
htag($var/xpfreej) =def join
tagpos($var/xpfreej) =def j (7)

(1) – X does not includes
tagged elements
and flwr expressions
(2)
– {$var1, . . . , $varn} =

DocV ars(Γ);

– Tagj = Tagi
pj

$var′/xpfreej ∈ X
Root($var′) = $vari

one pj

for each $var′/xpfreej

– Tagi = Tagi
1 . . . Tagi

s

Tagi
r, 1 ≤ r ≤ s

one Tagi
r

for each $var′/xpfreer

∈ X
Root($var′) = $vari

and

one Tagi
r

for each $var′/xpfreer

inΓ
Root($var′) = $vari

(3)
– doc = Doc($var, Γ)

– tagi = htag(Γ $var/xpfree)
$var′ /xpfree ∈ X
$var = Root($var′)

– Node = [N1, . . . , Nn]
Ni = [Nodeiki

|NTag]
if ($var′, for, vxpfree,
C) ∈ Γ
Ni = NTag
otherwise

(4) {$var1, . . . , $varn} =
DocV ars(Γ);

(5) {$var1, . . . , $varn} =
DocV ars(Γ).

(6) {$var1, . . . , $varn} =
DocV ars(Γ).

(7) for every $var ∈ V ars(Γ),
xpfreej ∈ Rootedby($var,
X) ∪ Rootedby($var, Γ)

Basically, the translation of XQuery expressions produces new rules (in the
example mybook) having the form of ”views” in which a ”join” of documents is
achieved (the join predicate makes the join). The join combines the values for
local variables whose value is the root of the input documents (in the example
$book whose value is computed by vbook). The join also takes into account the
constraints on these local variables (predicate constraints). Finally, for these
local variables the set of required paths is computed. In the example, there is a
local variable $book whose value is the root of the document, and title and year
are the required paths computed by vbook.
Now, we can build the goal for obtaining the answer for xquery as follows.
Taking htag(xquery) = mybook and tagpos(xquery) = 1 then the goal is
: −mybook(MyBook,Node, Type,Doc) and the answer is:

MyBook = mybooktype(”XML in Scottland”, [”2002”]), Node = [[[1, 2], [1, 2]]]
Type = [[[3, 3]]], Doc = [[”books.xml”]]

This answer represents the XML document:

Answer as an XML document
<mybook year=”2002”>

<title>XML in Scotland</title>
</mybook>

Let us remark that the output document is not numbered as the source doc-
uments. The join of several documents with different node and type numbering
produces an unique output document. However, the output document is still
indexed and typed by considering the list of node and type numbers of the in-
put documents. In the example the first [1, 2] represents the node number of
the book titles, and the second [1, 2] represents the node number of the book
years. Analogously, the first ”3” represents the type number of book titles and
the second ”3” the type number of book years. The numbering of output docu-
ments still allows the recovering of the hierarchical structure by considering the
lexicographic order in lists. Due to the lack of space we omit here the details
about the reconstruction of output documents.

5 Conclusions and Future Work

In this paper, we have studied how to translate XQuery expressions into logic
programming. It allow us to evaluate XQuery expressions against XML docu-
ments using logic rules. As future work we would like to implement our tech-
nique. We have already implemented XPath in logic programming (see http:
//indalog.ual.es/Xindalog). Taking as basis this implementation we would
like to extend it to XQuery expressions.

References

[ABE06] J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-
Baños. Magic sets for the XPath language. Journal of Universal Computer
Science, 12(11):1651–1678, 2006.

[ABE07] J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-
Baños. Querying XML documents in logic programming. To appear in
Theory and Practice of Logic Programming, available at http: // www.

ual. es/∼jalmen , 2007.
[BBFS05] James Bailey, Franois Bry, Tim Furche, and Sebastian Schaffert. Web

and Semantic Web Query Languages: A Survey. In Reasoning Web, First
International Summer School, volume 3564, pages 35–133. LNCS, 2005.

[BCF05] Veronique Benzaken, Giuseppe Castagna, and Alain Frish. CDuce: an
XML-centric general-purpose language. In Procs of the ACM ICFP, pages
51–63. ACM Press, 2005.

[BGvK+05] Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. Pathfinder: XQuery - The Relational
Way. In Procs. of the VLDB, pages 1322–1325. ACM Press, 2005.

[Bol00] H. Boley. Relationships between logic programming and XML. In Proceed-
ings of the Workshop on Logic Programming, 2000.

[Bol01] H. Boley. The Rule Markup Language: RDF-XML Data Model, XML
Schema Hierarchy, and XSL Transformations. In Proc. of International
Conference on Applications of Prolog, INAP, pages 124–139. Prolog Asso-
ciation of Japan, 2001.

[CDF+04] D. Chamberlin, Denise Draper, Mary Fernández, Michael Kay, Jonathan
Robie, Michael Rys, Jerome Simeon, Jim Tivy, and Philip Wadler. XQuery
from the Experts. Addison Wesley, 2004.

[CF03] Jorge Coelho and Mario Florido. Type-based XML processing in logic
programming. In Proceedings of the PADL 2003, pages 273–285. LNCS
2562, 2003.

[CH01] D. Cabeza and M. Hermenegildo. Distributed WWW Programming using
(Ciao-)Prolog and the PiLLoW Library. TPLP, 1(3):251–282, 2001.

[Cha02] D. Chamberlin. XQuery: An XML Query Language. IBM Systems Journal,
41(4):597–615, 2002.

[HP03] H. Hosoya and B. C. Pierce. XDuce: A Statically Typed XML Processing
Language. ACM Transactions on Internet Technology, TOIT, 3(2):117–
148, 2003.

[May04] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML
Data Manipulation Language. Theory and Practice of Logic Programming,
TPLP, 4(3):239–287, 2004.

[MS03] A. Marian and J. Simeon. Projecting XML Documents. In Procs. of VLDB,
pages 213–224. Morgan Kaufmann, 2003.

[OOP+04] Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon
Schaller, and Nigel Westbury. ORDPATHs: insert-friendly XML node la-
bels. In Procs. of the ACM SIGMOD, pages 903 – 908. ACM Press, 2004.

[SB02] S. Schaffert and F. Bry. A Gentle Introduction to Xcerpt, a Rule-based
Query and Transformation Language for XML. In Proc. of RuleML, 2002.

[Sei02] D. Seipel. Processing XML-Documents in Prolog. In Procs. of the Work-
shop on Logic Programming 2002, 2002.

[Thi02] Peter Thiemann. A typed representation for HTML and XML documents
in Haskell. Journal of Functional Programming, 12(4&5):435–468, 2002.

[TVB+02] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasun-
daram, Eugene Shekita, and Chun Zhang. Storing and querying ordered
xml using a relational database system. In Procs of the ACM SIGMOD,
pages 204–215. ACM Press, 2002.

[W3C07a] W3C. XML Path language (XPath) 2.0. Technical report, www.w3.org,
2007.

[W3C07b] W3C. XQuery 1.0: An XML Query Language. Technical report,
www.w3.org, 2007.

[Wad02] P. Wadler. XQuery: A Typed Functional Language for Querying XML. In
Advanced Functional Programming, 4th International School, AFP, LNCS
2638, pages 188–212. Springer, 2002.

[Wie05] J. Wielemaker. SWI-Prolog SGML/XML Parser, Version 2.0.5. Technical
report, Human Computer-Studies (HCS), University of Amsterdam, March
2005.

[WR99] Malcolm Wallace and Colin Runciman. Haskell and XML: Generic com-
binators or type-based translation? In Proceedings of the International
Conference on Functional Programming, pages 148–159. ACM Press, 1999.

