
Integrating XQuery and Logic Programming�

Jesús M. Almendros-Jiménez, Antonio Becerra-Terón,
and Francisco J. Enciso-Baños

Dpto. Lenguajes y Computación
Universidad de Almeŕıa

{jalmen,abecerra,fjenciso}@ual.es

Abstract. In this paper we investigate how to integrate the XQuery
language and logic programming. With this aim, we represent XML doc-
uments by means of a logic program. This logic program represents the
document schema by means of rules and the document itself by means
of facts. Now, XQuery expressions can be integrated into logic program-
ming by considering a translation (i.e. encoding) of for-let-where-return
expressions by means of logic rules and a goal.

1 Introduction

The eXtensible Markup Language (XML) is a simple, very flexible text format
derived from SGML. Originally designed to meet the challenges of large-scale
electronic publishing, XML is also playing an increasingly important role in
the exchange of a wide variety of data on the Web and elsewhere. In this con-
text, XQuery [W3C07b, CDF+04, Wad02, Cha02] is a typed functional lan-
guage devoted to express queries against XML documents. It contains XPath
[W3C07a] as a sublanguage which supports navigation, selection and extrac-
tion of fragments from XML documents. XQuery also includes expressions (i.e.
for-let-where-return expressions) to construct new XML values and to join mul-
tiple documents. The design of XQuery has been influenced by group members
with expertise in the design and implementation of other high-level languages.
XQuery has static typed semantics and a formal semantics which is part of the
W3C standard [CDF+04, W3C07b].

The integration of logic programming languages and web technologies, in parti-
cular, XML data processing is interesting from the point of view of the appli-
cability of logic programming. On one hand, XML documents are the standard
format of exchanging information between applications. Therefore, logic lan-
guages should be able to handle and query such documents. On the other hand,
logic languages could be used for extracting and inferring semantic information
from XML, RDF (Resource Description Framework) and OWL (Ontology Web
Language) documents, in the line of “Semantic Web” requirements [BHL01].
Therefore, logic languages can find a natural and interesting application field in
this area. The integration of declarative programming and XML data processing
� This work has been partially supported by the EU (FEDER) and the Spanish MEC

under grant TIN2005-09207-C03-02.

D. Seipel, M. Hanus, and A. Wolf (Eds.): INAP/WLP 2007, LNAI 5437, pp. 117–135, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

118 J.M. Almendros-Jiménez, A. Becerra-Terón, and F.J. Enciso-Baños

is a research field of increasing interest in the last years (see [BBFS05] for a
survey). There are proposals of new languages for XML data processing based
on functional, and logic programming.

The most relevant contribution is the Galax project [MS03, CDF+04], which
is an implementation of XQuery in functional programming, using OCAML as
host language. There are also proposals for new languages based on functional
programming rather than implementing XPath and XQuery. This is the case of
XDuce [HP03] and CDuce [BCF05, BCM05], which are languages for XML data
processing, using regular expression pattern matching over XML trees, subtyp-
ing as basic mechanism, and OCAML as host language. The CDuce language
does fully statically-typed transformation of XML documents, thus guarantee-
ing correctness. In addition, there are proposals around Haskell for the handling
of XML documents, such as HaXML [Thi02, ACJ04] and [WR99].

In the field of logic programming there are also contributions for the handling
of XML documents. For instance, the Xcerpt project [SB02, BS02a] proposes
a pattern and rule-based query language for XML documents, using the so-
called query terms including logic variables for the retrieval of XML elements.
For this new language, a specialized unification algorithm for query terms has
been studied in [BS02b]. Another contribution of a new language is XPathLog
(integrated in the the Lopix system) [May04] which is a Datalog-style extension
for XPath with variable bindings. Elog [BFG01] is also a logic-based XML data
manipulation language, which has been used for representing Web documents
by means of logic programming. This is also the case of XCentric [CF07, CF03,
CF04], which can represent XML documents by means of logic programming,
and handles XML documents by considering terms with functions of flexible
arity and regular types. FNPath [Sei02] is also a proposal for using Prolog as
a query language for XML documents. It maps XML documents to a Prolog
Document Object Model (DOM), which can consist of facts (graph notation)
or a term structure (field notation). FnPath can evaluate XPath expressions
based on that DOM. The Rule Markup Language (RuleML) [Bol01, Bol00b,
Bol00a] is a different kind of proposal in this research area. The aim of RuleML
is the representation of Prolog facts and rules in XML documents, and thus,
the introduction of rule systems into the Web. Finally, some well-known Prolog
implementations include libraries for loading and querying XML documents,
such as SWI-Prolog [Wie05] and CIAO [CH01].

In this paper, we investigate how to integrate the XQuery language and logic
programming. With this aim:

1. Following our previous proposal [ABE08, ABE06], an XML document can
be seen as a logic program (a Prolog program), by considering facts and
rules for expressing both the XML schema and document.

2. Now, our proposal is that an XQuery expression can be translated (i.e. en-
coded) into logic programming (i.e. into a Prolog program) by introducing
new rules for the join of documents, and for the translation of for-let-where-
return expressions. Such rules are combined with the rules and facts repre-
senting the input XML documents.

Integrating XQuery and Logic Programming 119

3. Finally, a specific goal is generated for obtaining the answer of the given
XQuery expression. From the set of answers of the generated goal, we can
rebuild an XML document representing the answer of the given XQuery
expression.

In summary, our technique allows the handling of XML documents as follows.
Firstly, the input XML documents are loaded. It involves the translation of the
XML documents into a logic program. For efficiency reasons, the rules, which
correspond to the XML document structure, are loaded in main memory, but
facts, which represent the values of the XML document, are stored in secondary
memory, whenever they do not fit in main memory and using appropriate in-
dexing techniques [ABE06, ABE08]. Secondly, the user can now write queries
against the loaded documents. Each given XQuery query is translated into a
logic program and a specific goal. The evaluation of such goal takes advantage
of the indexing technique to improve the efficiency of query solving. Finally, from
the set of answers of the goal, an output XML document can be built. Let us
remark that our proposal uses as basis the implementation of XPath in logic
programming studied in our previous work [ABE08] (for which a bottom-up
approach has been also studied in [ABE06]).

The structure of the paper is as follows. Section 2 will present the translation
of XML documents into Prolog; Section 3 will review the translation of XPath
into logic programming; Section 4 will provide the new translation of XQuery
expressions into logic programming; and finally, Section 5 will conclude and
present future work.

2 Translating XML Documents into Logic Programming

In order to define our translation, we need to number the nodes of the XML
documents. Similar kinds of node numbering have been studied in some works
about XML processing in relational databases [BGvK+05, OOP+04, TVB+02].
Our goal is similar to these approaches: to identify each inner node and leaf of
the tree represented by the XML document.

Given an XML document, we can consider a new XML document called
node-numbered XML document as follows. Starting from the root element num-
bered as 1, the node-numbered XML document is numbered using an attribute
called nodenumber1 where each j -th child of a tagged element is numbered
with the sequence of natural numbers i1it .j whenever the parent is num-
bered as i1it : < tag att1 = v1, . . . , attn = vn,nodenumber= i1. it.j >
elem1, . . . , elems < /tag >. This is the case of tagged elements. If the j-th child
is of a basic type (non tagged) and the parent is an inner node, then the element
is labeled and numbered as follows: < unlabeled nodenumber = i1.it.j >
elem < /unlabeled >; otherwise the element is not numbered. It gives to us
a hierarchical and left-to-right numbering of the nodes of an XML document.
1 It is supposed that “nodenumber” is not already used as attribute in the tags of the

original XML document.

120 J.M. Almendros-Jiménez, A. Becerra-Terón, and F.J. Enciso-Baños

An element in an XML document is further left in the XML tree than another
when the node number is smaller w.r.t. the lexicographic order of sequences of
natural numbers. Any numbering that identifies each inner node and leaf could
be adapted to our translation.

In addition, we have to consider a new document called type and node-
numbered XML document numbered using an attribute called typenumber as
follows. Starting the numbering from 1 in the root of the node-numbered XML
document, each tagged element is numbered as: < tag att1 = v1, . . . , attn =
vn, nodenumber = i1. . . . , it.j, typenumber = k > elem1, . . . , elems < /tag >.
The type number k of the tag is equal to l + n + 1 whenever the type number
of the parent is l, and n is the number of tagged elements weakly distinct 2

occurring in leftmost positions at the same level of the XML tree 3.
Now, the translation of the XML document into a logic program is as follows.

For each inner node in the type and node numbered XML document < tag att1 =
v1, . . . , attn = vn, nodenumber = i, typenumber = k > elem1, . . . , elems <
/tag > we consider the following rule, called schema rule:

tag(tagtype(Tagi1 , . . . ,Tagit , [Att1 , . . . ,Attn]),NTag, k ,Doc):-
tagi1 (Tagi1 , [NTagi1 |NTag], r ,Doc),
. . .,
tagit (Tagit , [NTagit |NTag], r ,Doc),
att1 (Att1 ,NTag, r ,Doc),
. . .,
attn(Attn ,NTag, r ,Doc).

where tagtype is a new function symbol used for building a Prolog term containing
the XML document; {tagi1 , . . . , tagit}, ij ∈ {1, . . . , s}, 1 ≤ j ≤ t, is the set of
tags of the tagged elements elem1, . . . , elems; Tagi1 , . . . , T agit are variables;
att1, . . . , attn are the attribute names; Att1, . . . , Attn are variables, one for each
attribute name; NTagi1 , . . . , NTagit are variables (used for representing the
last number of the node number of the children); NTag is a variable (used for
representing the node number of tag); k is the type number of tag; and finally,
r is the type number of the tagged elements elem1, . . . , elems

4.
In addition, we consider facts of the form: attj (vj , i , k , doc) (1 ≤ j ≤ n), where

doc is the name of the document. Finally, for each leaf in the type and node
numbered XML document: < tag nodenumber = i, typenumber = k > value <
/tag >, we consider the fact : tag(value, i , k , doc), where doc is the name of the
document. For instance, let us consider the following XML document called
“books.xml”:
2 Two elements are weakly distinct whenever they have the same tag but not the

same structure.
3 In other words, type numbering is done by levels and in left-to-right order, but each

occurrence of weakly distinct elements increases the numbering in one unit.
4 Let us remark that since tag is a tagged element, then elem1, . . . , elems have been

tagged with “unlabeled” labels in the type and node numbered XML document when
they were not labeled; thus they must have a type number.

Integrating XQuery and Logic Programming 121

<books>
<book year=“2003”>

<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</author>
<title>Data on the Web</title>
<review>A fine book.</review>

</book>
<book year=“2002”>

<author>Buneman</author>
<title>XML in Scotland</title>
<review>The best ever!</review>

</book>
</books>

Now, the previous XML document can be represented by means of a logic pro-
gram as follows:

Rules (Schema):
—————————————
books(bookstype(Book, []), NBooks,1,Doc) :-

book(Book, [NBook|NBooks],2,Doc).
book(booktype(Author, Title, Review, [Year]),

NBook ,2,Doc) :-
author(Author, [NAu|NBook],3,Doc),
title(Title, [NTitle|NBook],3,Doc),
review(Review, [NRe|NBook],3,Doc),
year(Year, NBook,3,Doc).

Facts (Document):
——————————————
year(’2003’, [1, 1], 3,“books.xml”).
author(’Abiteboul’, [1, 1, 1], 3,“books.xml”).
author(’Buneman’, [2,1, 1], 3,“books.xml”).
author(’Suciu’, [3,1,1], 3,“books.xml”).
title(’Data on the Web’, [4, 1, 1], 3,“books.xml”).
unlabeled(’A’, [1, 5, 1, 1], 4,“books.xml”).
em(’fine’, [2, 5, 1, 1], 4,“books.xml”).

review(reviewtype(Un,Em,[]),NReview,3,Doc):-
unlabeled(Un,[NUn|NReview],4,Doc),
em(Em,[NEm|NReview],4,Doc).

review(reviewtype(Em,[]),NReview,3,Doc):-
em(Em,[NEm|NReview],5,Doc).

em(emtype(Unlabeled,Em,[]),NEms,5,Doc) :-
unlabeled(Unlabeled,[NUn|NEms],6,Doc),
em(Em, [NEm|NEms],6,Doc).

unlabeled(’book.’, [3, 5, 1, 1], 4,“books.xml”).
year(’2002’, [2, 1], 3,“books.xml”).
author(’Buneman’, [1, 2, 1], 3,“books.xml”).
title(’XML in Scotland’, [2, 2, 1], 3,“books.xml”).
unlabeled(’The’, [1, 1, 3, 2, 1], 6,“books.xml”).
em(’best’, [2, 1, 3, 2, 1], 6,“books.xml”).
unlabeled(’ever!’, [3, 1, 3, 2, 1], 6,“books.xml”).

Here we can see the translation of each tag into a predicate name: books , book ,
etc. Each predicate has four arguments, the first one, used for representing the
XML document structure, is encapsulated into a function symbol with the same
name as the tag adding the suffix type. Therefore, we have bookstype, booktype,
etc. The second argument is used for numbering each node; the third argument of
the predicates is used for numbering each type; and the last argument represents
the document name. The key element of our translation is to be able to recover
the original XML document from the set of rules and facts.

3 Translating XPath into Logic Programming

In this section, we present how XPath expressions can be translated into a logic
program. Here we present the basic ideas, a more detailed description can be
found in [ABE08].

We restrict ourselves to XPath expressions of the form xpathexpr = /expr1

. . . /exprn where each expri (1 ≤ i ≤ n) can be a tag or a tag with a boolean
condition of the form [xpathexpr = value], where value has a basic type. More
complex XPath queries [W3C07a] can be expressed in XQuery, and therefore
this restriction does not reduce the expressivity power of our query language.

122 J.M. Almendros-Jiménez, A. Becerra-Terón, and F.J. Enciso-Baños

With the previous assumption, each XPath expression xpathexpr = /expr1

. . . /exprn defines a free of equalities XPath expression, denoted by FE(xpath-
expr). Basically, boolean conditions [xpathexpr = value] are replaced by [xpath-
expr] in free of equalities XPath expressions. These free of equalities XPath
expressions define a subtree of the XML document, in which is required that
some paths exist (occurrences of boolean conditions [xpathexpr]).

For instance, with respect to the XPath expression /books/book [author =
Suciu]/title, the free of equalities XPath expression is /books/book [author] /title
and the subtree of the type and node numbered XML document which corre-
sponds with the expression /books/book [author]/title is as follows:

<books nodenumber=1, typenumber=1>
<book year=“2003”, nodenumber=1.1, typenumber=2>
<author nodenumber=1.1.1 typenumber=3>Abiteboul</author>
<author nodenumber=1.1.2 typenumber=3>Buneman</author>
<author nodenumber=1.1.3 typenumber=3>Suciu</author>
<title nodenumber=1.1.4 typenumber=3>Data on the Web</title>
</book>
<book year=“2002” nodenumber=1.2, typenumber=2>
<author nodenumber=1.2.1 typenumber=3>Buneman</author>
<title nodenumber=1.2.2 typenumber=3>XML in Scotland</title>
</book>
</books>

Now, given a type and node numbered XML document D, a program P rep-
resenting D, and an XPath expression xpathexpr then the logic program repre-
senting xpathexpr is Pxpathexpr, obtained from P taking the schema rules for
the subtree of D defined by FE(xpathexpr), and the facts of P . For instance,
with respect to the above example, the schema rules defined by /books/book
[author]/title are:

books(bookstype(Book, []), NBooks, 1,Doc):-
book(Book, [NBook|NBooks], 2,Doc).

book(booktype(Author,Title,Review,[Year]),NBook,2,Doc) :-
author(Author,[NAuthor|NBook],3,Doc),
title(Title,[NTitle|NBook],3,Doc).

and the facts are the same as the original program. Let us remark that in practice,
these rules can be obtained from the schema rules by removing the predicates
which do not occur as tags in the free of equalities XPath expression. Now, given
a type and node numbered XML document, and an XPath expression xpathexpr,
the set of goals obtained from xpathexpr are defined as follows.

Firstly, each XPath expression xpathexpr can be mapped into a set of Prolog
terms, denoted by PT (xpathexpr), representing the patterns of the query. Due
to XML records can have different structure, one pattern is generated for each
kind of record. To each pattern t we can associate a set of type numbers, denoted
by TN(t).

Now, the goals are defined as: {tag(Pattern, Node, T ype, doc){Pattern →
t, T ype → r} | t ∈ PT (xpathexpr), r ∈ TN(t)} where tag is the leftmost tag
in xpathexpr with a boolean condition; r is a type number associated to each
pattern (i.e. r ∈ TN(t)); Pattern, Node and Type are variables; and doc is the
document name of the input XML document. In the case of xpathexpr without
boolean conditions we have that tag is the rightmost one.

Integrating XQuery and Logic Programming 123

For instance, with respect to /books/book [author = Suciu]/title, then PT (
/books/ book [author = Suciu]/title)={booktype(′Suciu ′,Title,Review , [Year])},
TN(booktype(′Suciu′, T itle, Review, [Y ear])) = {2}, and therefore the (unique)
goal is : −book(booktype(′Suciu ′,Title,Review ,Year),Node, 2,′′ books.xml′′).

We will call head tag of xpathexpr to the leftmost tag with a boolean con-
dition, and it will be denoted by htag(xpathexpr). In the case of xpathexpr
without boolean conditions then the head tag is the rightmost one. In the pre-
vious example, htag(/books/book[author = Suciu]/title) = book.

In summary, the handling of an XPath query involves the “specialization” of
the schema rules of the XML document (removing predicates) and the generation
of one or more goals. The goals are obtained from the patterns and the leftmost
tag with a boolean condition on the XPath expression. Obviously, instead of a
set of goals for each XPath expression, a unique goal can be considered by adding
a new rule. In such a case, the head tag would be the name of the predicate of
the added rule.

4 Translating XQuery into Logic Programming

Similarly to XPath, XQuery expressions can be translated into a logic program
generating the corresponding goal. We will focus on a subset of XQuery, called
XQuery core language, whose grammar can be defined as follows.

Core XQuery
xquery:= dxpfree | < tag >′ {′xquery, . . . , xquery′}′ < /tag > | flwr.
dxpfree:= document(doc) ’/’ xpfree.
flwr:= for $var in vxpfree [where constraint] return xqvar |

let $var := vxpfree [where constraint] return xqvar.
xqvar:= vxpfree | < tag >′ {′xqvar, . . . , xqvar′}′ < /tag > | flwr.
vxpfree:= $var | $var ’/’ xpfree | dxpfree.
Op:= <= | >= | < | > | =.
constraint := vxpfree Op value | vxpfree Op vxpfree

| constraint ’or’ constraint | constraint ’and’ constraint.

where value is an XML document, doc is a document name, and xpfree is a free
of equalities XPath expression. Let us remark that XQuery expressions use free
of equalities XPath expressions, given that equalities can be always introduced
in where expressions. We will say that an XQuery expression ends with attribute
name whenever the XQuery expression has the form of an vxpfree expression,
and the rightmost element has the form @att, where att is an attribute name.
The translation of an XQuery expression involves the following steps:

• Firstly, for each XQuery expression xquery, we can define a logic program
Pxquery and a goal.

• Secondly, analogously to XPath expressions, for each XQuery expression
xquery, we can define the so-called head tag, denoted by htag(xquery),
denoting the predicate name used for the building of the goal (or subgoal
whether the expression xquery is nested).

124 J.M. Almendros-Jiménez, A. Becerra-Terón, and F.J. Enciso-Baños

• Finally, for each XQuery expression xquery, we can define the so-called tag
position, denoted by tagpos(xquery), representing the argument of the head
tag (i.e. the argument of the predicate) in which the answer is retrieved.

In other words, in the translation each XQuery expression can be mapped into
a program Pxquery and into a goal of the form : −tag(Tag, Node, T ype, Docs),
where tag is the head tag, Tag ≡ Tag1, . . . , T agn are variables, and Tagpos

represents the answer of the query, where pos = tagpos(xquery). In addition,
Node and Type are variables representing the node and type numbering of the
output document, and Docs is a variable representing the documents involved
in the query. As a particular case of XQuery expressions, XPath expressions
xpathexpr hold that tagpos(xpathexpr) = 1.
As running example, let us suppose a query requesting the year and title of the
books published before 2003.

xquery = for $book in document (’books.xml’)/books/book
return let $year := $book/@year
where $year<2003
return <mybook>{$year, $book/title}</mybook>

For this query, the translation is as follows:

Pxquery = {
(1) mybook(mybooktype(Title, [Y ear]), [Node], [Type], [Doc]) : −

join(Title, Y ear, Node, Type, Doc).

(2) join(Title, Y ear, [Node], [Type], [Doc]) : −
vbook(Title, Y ear, Node, Type, Doc),
constraints(vbook(Title, Y ear)).

(3) constraints(V book) : −lc(V book).
lc(V book) : −c(V book).
c(vbook(Title, Y ear)) : −le(Y ear, 2003).

(4) vbook(Title, Y ear, [Node, Node], [TTitle, TY ear],′′ books.xml′′) : −
title(Title, [NTitle|Node], TT itle,′′ books.xml′′),
year(Y ear, Node, TY ear,′′ books.xml′′).

}

Basically, the translation of XQuery expressions needs to consider the follow-
ing elements:

• The so-called document variables which are XQuery variables associated to
XML documents by means of for or let expressions.

• Variables which are not document variables. Each one of these variables can
be associated to a document variable. The value of these variables depends on
the value of the associated document variable. Such dependence is expressed
by means of a for or let expression. In this case, we say that the associated
document variable is the root of the given variable.

• XPath expressions associated to a document variable. Such XPath expres-
sions are those ones such that: (a) the document variable occurs in the XPath
expression or (b) a variable whose root is the document variable occurs in
the XPath expression.

• Constraints associated to a document variable. Such constraints are those
including XPath expressions associated to the given document variable.

Integrating XQuery and Logic Programming 125

In the example, there is only one document variable, that is $book, associated to
“books.xml” by means of a for expression, and $year can be associated to $book
whose dependence is expressed by means of the let expression. Therefore, $book
is the root of $year. In addition, there are two XPath expressions associated to
$book: $year and $book/title. Finally, the constraint “$year<2003” is associated
to the document variable $book. Now, the translation of XQuery expressions can
be summarized as follows:

• The return expression generates one or more rules for describing the structure
of the output XML document.

• Such structure is generated by means of a special predicate called join, de-
fined by means of one rule, whose role is to make the join of multiple docu-
ments.

• The predicate join calls to predicates called vvar’s, one for each $var, where
$var is a document variable.

• Each vvar predicate calls to the predicates of the head tags of the XPath
expressions associated to $var.

• The predicate join also calls to a special predicate called constraints, defined
by one rule, whose role is to check the constraints of the where expres-
sions included in the XQuery expression. The constraints predicate calls to
lc1,. . . ,lcn, one for each document variable i (1 ≤ i ≤ n), and each one of
them checks a list of constraints for the given document variable i. ci

1,. . . ,
ci
m check each constraint k (1 ≤ k ≤ m) of a document variable i.

In the example, rule (1) defines the structure of the output XML document ac-
cording to the return expression in which a mybook record is built including title
and year as attribute. Rule (2) of the predicate join generates such structure
by calling the predicate vbook which represents the document variable $book.
In addition, join also calls to the predicate constraints by checking the where
expression. The vbook predicate (rule (4)) calls to the head tags of the XPath
expressions associated to the document variable $book. In this case, the head tags
of $year and $book/title are title and year, respectively. Finally, rule (3) declares
the special predicate constraints which checks the constraint “$year<2003” as-
sociated to $book. Since there is only one document variable and one constraint,
the transformation only generates predicates called lc and c, in order to check
the given constraint. The predicate le represents the operator “<”.

With respect to node and type numbering, we adopt the following convention.
The output XML document can be built from several input XML documents.
Therefore it is possible that the original numbering is not valid for numbering
the output document. However, we can still number the output XML documents
by considering as identifier (node and type number) of each record of the output
document the list of identifiers (node and type numbers) of the input documents.
Such numbering allow to identify each record of the output XML document. This
is the reason why rules (1), (2) and (4) collect in a Prolog list the type and node
number of the called predicates (in this case, there is only one input document).

With respect to the goal, the head tag of each Pxquery has to be com-
puted in each case (see next section for more details). In the example, the head

126 J.M. Almendros-Jiménez, A. Becerra-Terón, and F.J. Enciso-Baños

tag is mybook, that is, htag(xquery) = mybook, and the tagpos is 1, that is,
tagpos(xquery) = 1. Therefore, the goal is : −mybook(MyBook, Node, T ype,
Doc) and the answer is:

MyBook = mybooktype(′′XML in Scottland′′, [′′2002′′]), Node = [[[[2, 1], [2, 1]]]]
Type = [[[3, 3]]], Doc = [[′′books.xml′′]]

This answer represents the following XML document:

<mybook year=′′2002′′>
<title>XML in Scotland</title>

</mybook>

In order to build the output XML document from the set of answers, we have
to consider some auxiliary rules for expressing the schema of the XML output
documents. In the example, the schema rules are the following:

mybook(mybooktype(Title, [Y ear]), [[[Node1, Node2]]], [[[Type1, Type2]]], [[Doc]]) : −
title(Title, [NTitle|Node1], Type1, Doc),
year(Y ear, Node2, Type2, Doc).

Similarly to input documents, in output XML documents the children are
numbered with a larger number than parents. In the example the mybook element
is numbered as [[[[2, 1], [2, 1]]]] and the child title is numbered as [2, 2, 1].

4.1 Formalizing the Transformation

In this section, we show an algorithm for encoding XQuery in logic programming.
This algorithm will be illustrated with an example. Assuming the notation of Ta-
ble 1, the algorithm is shown in Tables 2 and 3. The algorithm has the following
elements:

(1) It distinguishes cases for each type of XQuery expression;
(2) It defines the values for Pxquery, htag(xquery) and tagpos(xquery) in each

case;
(3) It uses the notation PX

Γ in order to denote the encoding of a set X of XQuery
expressions w.r.t. a context Γ ;

(4) The context Γ includes assertions of the form ($var, let, xpathexpr, C) and
($var, for, xpathexpr, C) whose meaning is the following: the XQuery vari-
able $var has been assigned to xpathexpr by means of a let (resp. a for)
expression with the list of constraints C.

The most relevant cases of the algorithm are cases (2) of Table 2, and (8) of
Table 3.

Case (2) introduces the rule for providing structure to the output document.
The set {tag1, . . . , tagk, att1, . . . , atts} contains the head tags of the expressions
xquery1, . . . , xqueryn, and for each one of them, the type and node numbers
are collected in a Prolog list. In addition, the tag position allows to know which
arguments have to be selected from the call to the head tags (it is expressed in
the conditions of case (2)).

Integrating XQuery and Logic Programming 127

Table 1. Notation

V ars(Γ) =def {$var | ($var, let, vxpfree,C) ∈ Γ or ($var, for, vxpfree,C) ∈ Γ};
Denotes the variables of a context Γ ;

DocV ars(Γ) =def {$var | ($var, let, dxpfree,C) ∈ Γ or ($var, for, dxpfree,C) ∈ Γ};
Denotes the document variables of a context Γ ;

Doc($var, Γ) =def doc whenever Γ $var = document(doc)/xpfree;
Denotes the document associated to a document variable
$var in a context Γ ;

Γ$var =def vxpfree whenever ($var, let, vxpfree,C) or ($var, for, vxpfree,C) ∈ Γ ;
Denotes the XPath expression associated to a variable
$var in a context Γ ;

Γ $var =def vxpfree[λ1 · . . . · λn] where λi = {$vari → Γ$vari
} and

{$var1, . . . , $varn} = V ars(Γ);
Denotes the free of variables XPath expression associated
to a variable $var in a context Γ ;
Variables are replaced by the associated XPath expression;

Root($var) =def $var′ whenever $var ∈ DocV ars(Γ) and $var = $var′

or (($var, let, $var′′/xpfree,C) ∈ Γ or ($var, for, $var′′/xpfree,C) ∈ Γ
and Root($var′′) = $var′);

Denotes the root of a given variable $var;

Rootedby($var,X) =def {xpfree | $var/xpfree ∈ X};
Denotes the XPath expression associated to $var in X ;

Rootedby($var,Γ) =def {xpfree | $var/xpfree Op vxpfree ∈ C
or $var/xpfree Op value ∈ C, C ∈ Constraints($var, Γ)};

Denotes the XPath expression associated to $var in a context Γ ;

Constraints($var, Γ) =def {Ci | 1 ≤ i ≤ n, C ≡ C1 Op . . . Op Cn,
($var, let, vxpfree,C) ∈ Γ or ($var, for, vxpfree, C) ∈ Γ}

Denotes the list of constraints associated to $var in a context Γ ;

Case (8) properly introduces the rule of join, which calls vvar predicates for
each document variable $var. In addition, the join predicate calls to the con-
straints predicate. The tag position indicates the argument to be selected from
the call to the vvar predicate (condition (b)). Each vvar predicate calls to the
head tags of the XPath expressions associated to the document variable $var
(condition (c)). Finally, the constraints predicate calls to predicates lc1, . . . , lcn

which check each constraint in a sequential way if the connective is and, and
otherwise, the algorithm introduces alternative rules for each or connective (con-
ditions (e) and (f)).

In the running example, case (2) is applied to < mybook > $year, $book/
title < /mybook >, and the head tags of $year and $book/title are join. For
this reason the rule (1) of the running example has the form mybook(. . .) : −
join(. . .). Case (8) is applied to vbook, calling the predicates title and year which
are the head tags of the associated XPath expressions $year and $book/title.
Finally, the constraints predicate calls to lc, which at the same time calls to c
for checking the constraint $year < 2003.

128 J.M. Almendros-Jiménez, A. Becerra-Terón, and F.J. Enciso-Baños

As an example of application of the algorithm, let us suppose the following
XQuery expression:

Table 2. Translation of XQuery into Logic Programming

(1) Pdocument(doc)/xpfree =def Pxpfree

htag(document(doc)/xpfree) =def htag(xpfree)
tagpos(document(doc)/xpfree) =def tagpos(xpfree)

(2) P<tag>{xquery1 ,...,xqueryn}</tag> =def

{R} ∪1≤i≤n Pxqueryi

and R ≡
tag(tagtype(Tag1

p1
, . . . , Tagk

pk
, [Att1q1 , . . . , Attsqs]),

[NTag1 , . . . , NTagk , NAtt1 , . . . , NAtts],
[TTag1 , . . . , TTagk , TAtt1 , . . . , TAtts],
[DTag1 , . . . , DTagk , DAtt1 , . . . , DAtts]) : −
tag1 (Tag1 , NTag1 , TTag1 , DTag1),
. . .

tagk (Tagk , NTagk , TTagk , DTagk),

att1 (Att1 , NAtt1 , TAtt1 , DAtt1),
. . .

atts (Atts , NAtts , TAtts , DAtts).

htag(xquery) =def tag, tagpos(xquery) =def 1

– Tagt 1 ≤ t ≤ k,
denotes Tagt

1, . . . , Tagt
r

where r is the arity of tagt;

– Attj 1 ≤ j ≤ s,

denotes Attj
1, . . . , Attj

s
where s is the arity of attj ;

– for every j ∈ {1, . . . , n}
htag(xqueryj) = atti,
tagpos(xqueryj) = qi,
1 ≤ i ≤ s,
whenever xqueryj

ends with attribute names,
and htag(xqueryj) = tagt,
tagpos(xqueryj) = pt

1 ≤ t ≤ k,
otherwise

(3) Pfor $var in vxpfree [where C] return xqvar =def

Pxqvar
{($var,for,vxpfree,C)}

htag (xquery) =def htag(xqvar)
tagpos(xquery) =def tagpos(xqvar)

(4) Plet $var := vxpfree [where C] return xqvar =def

Pxqvar
{($var,let,vxpfree,C)}

htag (xquery) =def htag(xqvar)
tagpos(xquery) =def tagpos(xqvar)

(5) PX
Γ =def

{R}∪ PX−{xquery/xpfree}∪1≤i≤n{xqvari/xpfree0}
Γ

and R ≡
tag(tagtype(Tag1 , . . . , Tagr , [Att1 , . . . , Attm]),

[Node1 , . . . , Nodes],
[Type1 , . . . , Types],
[Doc1 , . . . , Docs]) : −
tag1 (Tag1 , Node1 , Type1 , Doc1),
. . .

tags(Tags , Nodes , Types , Docs).

htag(xquery/xpfree) =def tag
tagpos(xquery/xpfree) =def 1

– Tag
t

(1 ≤ t ≤ s)
denotes Tagt

1, . . . , Tagt
a

where a is the arity of tagt;
– xquery/xpfree ∈ X

and xpfree ≡ /tag/xpfree0;
– xquery ≡ < tag > {xqvar1, . . . ,

xqvarn} < /tag >;
– {tag1, . . . , tags} =

{htag (xqvari /xpfree0)|
1 ≤ i ≤ n};

– for every p ∈ {1, . . . , n}
Tagi = Tagj

pj
, 1 ≤ i ≤ r, whenever

tagpos(xqvarp /xpfree0) = pj ,
htag(xqvarp /xpfree0) = tagj ,
and

Attl = Tagj
pj

, 1 ≤ l ≤ m, whenever

tagpos(xqvarp /xpfree0) = pj ,
htag(xqvarp /xpfree0) = tagj

and xqvarp /xpfree0
ends with attribute names

(6) PX
Γ =def PX−{xquery/xpfree}∪{xqvar/xpfree}

Γ∪{($var,for,vxpfree,C)}

htag(xquery/xpfree) =def htag(xqvar/xpfree)
tagpos(xquery/xpfree) =def tagpos(xqvar/xpfree)

– xquery/xpfree ∈ X ,
– xquery ≡
for $var in vxpfree [where C]
return xqvar

(7) PX
Γ =def PX−{xquery/xpfree}∪{xqvar/xpfree}

Γ∪{($var,let,vxpfree,C)}

htag(xquery/xpfree) =def htag(xqvar/xpfree)
tagpos(xquery/xpfree) =def tagpos(xqvar/xpfree)

– xquery/xpfree ∈ X ,
– xquery ≡
let $var := vxpfree [where C]
return xqvar

Integrating XQuery and Logic Programming 129

Table 3. Translation of XQuery into Logic Programming (cont’d)

(8)

PX
Γ =def

{J Γ } ∪ CΓ ∪ {R$var |$var ∈ DocV ars(Γ)}
⋃

$var ∈ DocV ars(Γ),
$var = Root($var′),
xpfree ∈ Rootedby($var′ , X) ∪ Rootedby($var′ , Γ)

PΓ̄$var′ /xpfree
(a)

J Γ ≡
join(Tag1, . . . , Tagm, [Node1, . . . , Noden],

[Type1, . . . , Typen], [Doc1, . . . , Docn]) : −
vvar1(Tag1, Node1, Type1, Doc1),
. . .

vvarn(Tagn, Noden, Typen, Docn),

constraints(vvar1(Tag1), . . . , vvarn(Tagn)).

(b)

R$var ≡
vvar(Tag1, . . . , Tagn, Node, [Type1, . . . , Typen], doc) : −

tag1(Tag1, [Node11, . . . , Node1k1 |NTag], Type1, doc),
. . . ,
tagn(Tagn, [Noden1, . . . , Nodenkn |NTag], Typen, doc).

(c)

CΓ ≡ {
constraints(V var1, . . . , V varn) : −

lc1
1(V var1, . . . , V varn),

. . .
lcn

1 (V var1, . . . , V varn).

} ∪$var∈V ars(Γ),Cj∈constraints($var,Γ) Cj

(d)

Cj ≡
{lcj

i (V var1, . . . , V varn) : −
cj

i (V var1, . . . , V varn), lcj
i+1(V var1, . . . , V varn).

| 1 ≤ i ≤ n, Opi = and}
∪
{lcj

i (V var1, . . . , V varn) : −cj
i (V var1, . . . , V varn).

lcj
i (Vvar1 , . . . , Vvarn) : −lcj

i+1 (Vvar1 , . . . , Vvarn).
| 1 ≤ i ≤ n, Opi = or}

∪{c
j
i
|1≤i≤n}{C

j
i }

(e)

Cj
i ≡ cj

i (vvar1(Tag1), . . . , vvarn(Tagn)) : −Op(Tagk
j , value). (*)

Cj
i ≡ cj

i (vvar(Tag1), . . . , vvar(Tagn)) : −Op(Tagk
j , Tagm

r). (**)
(f)
htag($var/xpfreej) =def join
tagpos($var/xpfreej) =def j (g)

(a) – X does not include
tagged elements
and flwr expressions
(b)
– {$var1, . . . , $varn} =

DocV ars(Γ);
– for each $var′/xpfreej ∈ X

such that
Root($var′) = $vari and

tagpos(Γ $var′/xpfreej) = pj

then Tagj = Tagi
pj

– Tagi = Tagi
1 . . . Tagi

s

one Tagi
r, 1 ≤ r ≤ s

for each $var′/xpfreer

∈ X ∪ Γ such that
Root($var′) = $vari

(c)
– doc = Doc($var, Γ)

– tagi = htag(Γ $var′/xpfree)
$var′ /xpfree ∈ X
$var = Root($var′)

– Node = [N1, . . . , Nn] and
Ni = [Nodeiki

|NTag]
if ($var′, for, vxpfree,
C) ∈ Γ , and
Ni = NTag, otherwise

(d) {$var1, . . . , $varn} =
DocV ars(Γ)

(e)
– {$var1, . . . , $varn} =

DocV ars(Γ),

– Cj ≡ cj
1Op1 . . . , Opncj

n

(f)
– {$var1, . . . , $varn} =

DocV ars(Γ)

– (*) cj
i ≡ $var′/xpfreej

Op value
and Root($var′) = $vark

– (**) cj
i ≡ $var′/xpfreej

Op $var′/xpfreer,
Root($var′) = $vark and
Root($var′) = $varm

(g) for every $var ∈ V ars(Γ),
xpfreej ∈ Rootedby($var,
X) ∪ Rootedby($var, Γ)

xquery=
Let $store1 := document (“books1.xml”)/books

$store2 := document(“books2.xml”)/books
return
for $book1 in $store1/book
$book2 in $store2/book
return
let $title := $book1/title
where $book1/@year<2003 and $title=$book2/title

return <mybook>{
$title,
$book1/review,
$book2/review
}

</mybook>

requesting the reviews of books (published before 2003) occurring in two docu-
ments: the first one is the running example and the second one is:

130 J.M. Almendros-Jiménez, A. Becerra-Terón, and F.J. Enciso-Baños

<books>
<book year=“2003”>

<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</author>
<title>Data on the Web</title>
<review>very good</review>

</book>
<book year=“2002”>

<author>Buneman</author>
<title>XML in Scotland</title>

<review>Good reference!</review>
</book>

</books>

In this case, the return expression generates a new rule mybook in which the
title is obtained from the first document and review ’s are obtained from both
documents. The application of the algorithm is as follows:

Pxquery =(Rule(4)) Pxquery1

($store1 ,let,document(′′books1 .xml′′)/books,∅) =(Rule(4))

Pxquery2

Γ1
=(Rule(3)) Pxquery3

Γ1∪{($book1 ,for ,$store1 ,∅)} =(Rule(3))

Pxquery4

Γ1∪{($book1 ,for ,$store1 ,∅),($book2 ,for ,$store2 ,∅)} =(Rule(4))

Pxquery5

Γ2
=(Rule(2)) {R}∪ P$title,$book1/review,$book2/review

Γ2

where Γ1 = {($store1 , let, document(′′books1 .xml′′)/books,∅), ($store2 , let, document (′′books2 .

xml′′)/ books, ∅)} and also Γ2 = Γ1 ∪{($book1 , for , $store1 , ∅), ($book2 , for , $store2 , ∅), ($title,

let, $book1/ title, $book1/ @year < 2003 and $title = $book2/title)} . In addition, R is
defined as follows:

R =
mybook(mybooktype(Title,Review1 ,Review2 , []), [Node], [Type], [Doc]) : −

join(Title, Review1 ,Review2 ,Node,Type, Doc).

where join = htag($title), join = htag($book1/review), join = htag($book2/review), tagpos

($title) = 1 , tagpos ($book1/review) = 2 , tagpos($book2/review) = 3 .

Now, P$title,$book1/review,$book2/review
Γ2

is defined as:

P$title,$book1/review,$book2/review
Γ2

=Rule(8)

{J Γ} ∪ CΓ ∪ {R$store1 ,R$store2}∪
Pdocument(books1.xml)/books/book/title∪
Pdocument(books1.xml)/books/book/@year∪
Pdocument(books1.xml)/books/book/review∪
Pdocument(books2.xml)/books/book/title∪
Pdocument(books2.xml)/books/book/review

where J Γ and CΓ are defined as follows:

J Γ =

join(Title1 , Review1 ,Review2 , [Node1 ,Node2], [Type1 ,Type2], [Doc1 ,Doc2]) : −
vstore1 (Title1 ,Year1 ,Review1 ,Node1 ,Type1 ,Doc1),
vstore2 (Title2 ,Review2 ,Node2 , Type2 ,Doc2),
constraints(vstore1 (Title1 ,Year1 , Review1),vstore2 (Title2 ,Review2)).

Integrating XQuery and Logic Programming 131

CΓ = {
constraints(Vstore1 , Vstore2) : −

lc1 (Vstore1 , Vstore2).
lc1

1 (Vstore1 , Vstore2) : −c1
1 (Vstore1 , Vstore2),

c1
2 (Vstore1 , Vstore2).

c1
1 (vstore1 (Title1 ,Year1 ,Review1), vstore2 (Title2 ,Review2)) : −

le(Year1 ,2003).
c1
2 (vstore1 (Title1 ,Year1 ,Review1), vstore2 (Title2 ,Review2)) : −

eq(Title1 ,Title2).
}

where

– DocVars(Γ) = {$vstore1 , $vstore2},
– $title, $book1 /review, $book2 /review ∈ X ,

– Root($title) = $vstore1 , Root($book1) = $vstore1 and Root($book2) = $vstore2 ,

– $book1/@year and $book2/title occur in Γ ,

– Root($book1) = $vstore1 and Root($book2) = $vstore2 ,

– C1 ≡ c1
1 and c1

2 ∈ Γ , c1
1 ≡ $book1/@year < 2003 , c1

2 ≡ $title = $book2/title,

– Root($book1) = $vstore1 , Root($title) = $vstore1 and Root($book2) = $vstore2

Finally, R$store1 and R$store2 are defined as:

R$store1 =
vstore1 (Title,Year , Review, [Node, Node, Node], [Type1 , Type2 , Type3],

′′books1 .xml′′) : −
title(Title, [Node1 , Node2 |Node], Type1 ,′′ books1 .xml′′),
year(Year , [Node2 |Node], Type2 ,′′ books1 .xml′′),
review(Review, [Node1 , Node2 |Node], Type3 ,′′ books1 .xml′′).

R$store2 =
vstore2 (Title,Review, [Node, Node], [Type1 , Type2],′′ books2 .xml′′) : −

title(Title, [Node1 , Node2 |Node], Type1 ,′′ books2 .xml′′),
review(Review, [Node1 , Node2 |Node], Type2 ,′′ books2 .xml′′).

and

Pdocument(books1.xml)/books/book/title = Facts of P
Pdocument(books1.xml)/books/book/@year = Facts of P
Pdocument(books2.xml)/books/book/title = Facts of P
Pdocument(books1.xml)/books/book/review =

Pdocument(books2.xml)/books/book/review =
{
review(reviewtype(Unlabeled,Em, []), NReview,3 , Doc) : −

unlabeled(Unlabeled, [NUnlabeled|NReview],4 , Doc),
em(Em, [NEm|NReview],4 , Doc).

review(reviewtype(Em, []), NReview,3 , Doc) : −
em(Em, [NEm|NReview],5 , Doc).

em(emtype(Unlabeled,Em, []), NEms, 5 , Doc) : −
unlabeled(Unlabeled, [NUnlabeled|NEms],6 , Doc),
em(Em, [NEm|NEms],6 , Doc).

} ∪ Facts of P

where

– ′′books1 .xml′′ = Doc($vstore1 ,Γ),′′ books2 .xml′′ = Doc($vstore2 ,Γ)

– htag(document (′′books1 .xml′′) /books/book /title) = title

– htag(document (′′books1 .xml′′) /books/book /year) = year

– htag(document (′′books1 .xml′′) /books/book /review) = review

– Γ$title = document (′′books1 .xml′′) /books/book/

– Γ$book1 = document (′′books1 .xml′′) /books/book/

– Γ$book2 = document (′′books2 .xml′′) /books/book/

132 J.M. Almendros-Jiménez, A. Becerra-Terón, and F.J. Enciso-Baños

5 Conclusions and Future Work

In this paper, we have studied how to encode XQuery expressions into logic pro-
gramming. It allows us to evaluate XQuery expressions against XML documents
using logic rules.

As far as we know, this is the first time that XQuery is implemented in logic pro-
gramming. Previous proposals in this research area are mainly focused on the def-
inition of new query languages of logic style [SB02, CF07, May04, Sei02] and func-
tional style [HP03, BCF05] for XML documents, and the only proposal for XQuery
implementation takes as host language a functional language (i.e. OCAML). The
proposals of new query languages in this framework have to adapt the unification
in the case of logic languages [BS02b, May04, CF03], and the pattern matching
in the case of functional languages [BCF05, HP03] in order to accommodate the
handling of XML records. However, in our case, we can adopt standard term uni-
fication by encoding XML documents into logic programming, and therefore one
of the advantages of our approach is that it can be integrated with any Prolog
implementation. In addition, the advantage of a logic-based implementation of
XQuery is that, XQuery can be combined with logic programs. Logic programs
can be used, for instance, for representing RDF and OWL documents (see, for
instance, [WSW03, Wol04]), and therefore XML querying and processing can be
combined with RDF and OWL reasoning in our framework –in fact, we have been
recently working in a proposal in this line [Alm08].

On the other hand, the proposal of this paper also contributes to the study of the
representation and handling of XML documents in relational database systems. In
our framework, logic programs represent XML documents by means of rules and
a table of facts. In addition, the table of facts is indexed in secondary memory for
improving the retrieval. Similar processing and storing can be found in the pro-
posals of XML processing with relational databases (see [BGvK+05], [OOP+04]
and [TVB+02]). In fact, we plan to implement the storing of facts in a relational
database management system in order to improve fact storing and retrieval.

Therefore our proposal of a logic-based query language for the Semantic Web
combines the advantages of efficient retrieval of facts in a relational database
style together with reasoning capabilities of logic programming.

As futureworkwewould like to implementour technique.Wehavealready imple-
mented XPath in logic programming (see http://indalog.ual.es/Xindalog).
Taking as basis this implementation we would like to extend it to XQuery
expressions.

References

[ABE06] Almendros-Jiménez, J.M., Becerra-Terón, A., Enciso-Baños, F.J.: Magic

sets for the XPath language. Journal of Universal Computer Sci-

ence 12(11), 1651–1678 (2006)
[ABE08] Almendros-Jiménez, J.M., Becerra-Terón, A., Enciso-Baños, F.J.: Query-

ing XML documents in logic programming. Theory and Practice of Logic

Programming 8(3), 323–361 (2008)

http://indalog.ual.es/Xindalog

Integrating XQuery and Logic Programming 133

[ACJ04] Atanassow, F., Clarke, D., Jeuring, J.: UUXML: A Type-Preserving

XML Schema Haskell Data Binding. In: Jayaraman, B. (ed.) PADL 2004.

LNCS, vol. 3057, pp. 71–85. Springer, Heidelberg (2004)

[Alm08] Almendros-Jiménez, J.M.: An RDF Query Language based on Logic Pro-

gramming. In: Proceedings of the 3rd Int’l. Workshop on Automated

Specification and Verification of Web Systems. Electronic Notes on The-

oretical Computer Science, vol. 200, pp. 67–85 (2008)

[BBFS05] Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and Semantic Web Query

Languages: A Survey. In: Eisinger, N., Ma�luszyński, J. (eds.) Reasoning

Web. LNCS, vol. 3564, pp. 35–133. Springer, Heidelberg (2005)

[BCF05] Benzaken, V., Castagna, G., Frish, A.: CDuce: an XML-centric general-

purpose language. In: Proc. of the ACM SIGPLAN International Con-

ference on Functional Programming, pp. 51–63. ACM Press, New York

(2005)

[BCM05] Benzaken, V., Castagna, G., Miachon, C.: A full pattern-based paradigm

for XML query processing. In: Hermenegildo, M.V., Cabeza, D. (eds.)

PADL 2004. LNCS, vol. 3350, pp. 235–252. Springer, Heidelberg (2005)

[BFG01] Baumgartner, R., Flesca, S., Gottlob, G.: The elog web extraction lan-

guage. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS,

vol. 2250, pp. 548–560. Springer, Heidelberg (2001)

[BGvK+05] Boncz, P.A., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teub-

ner, J.: Pathfinder: XQuery - The Relational Way. In: Proc. of the In-

ternational Conference on Very Large Databases, pp. 1322–1325. ACM

Press, New York (2005)

[BHL01] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web – A new form

of Web content that is meaningful to computers will unleash a revolution

of new possibilities. In: Scientific American, 36 pages (May 2001)

[Bol00a] Boley, H.: Relationships Between Logic Programming and RDF. In:

Kowalczyk, R., et al. (eds.) PRICAI-WS 2000. LNCS, vol. 2112, pp. 201–

218. Springer, Heidelberg (2001)

[Bol00b] Boley, H.: Relationships between logic programming and XML. In: Proc.

of the Workshop on Logic Programming, pp. 19–34, Würzburg, Germany

(2000) (GMD Report 90)

[Bol01] Boley, H.: The rule markup language: RDF-XML data model, XML

schema hierarchy, and XSL transformations. In: Bartenstein, O., Geske,

U., Hannebauer, M., Yoshie, O. (eds.) INAP 2001. LNCS, vol. 2543, pp.

124–139. Springer, Heidelberg (2003)

[BS02a] Bry, F., Schaffert, S.: The XML Query Language Xcerpt: Design Princi-

ples, Examples, and Semantics. In: Chaudhri, A.B., et al. (eds.) NODe-

WS 2002. LNCS, vol. 2593, pp. 295–310. Springer, Heidelberg (2003)

[BS02b] Bry, F., Schaffert, S.: Towards a Declarative Query and Transformation

Language for XML and Semistructured Data: Simulation Unification. In:

Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 255–270. Springer,

Heidelberg (2002)

[CDF+04] Chamberlin, D., Draper, D., Fernández, M., Kay, M., Robie, J., Rys,

M., Simeon, J., Tivy, J., Wadler, P.: XQuery from the Experts. Addison-

Wesley, Reading (2004)

134 J.M. Almendros-Jiménez, A. Becerra-Terón, and F.J. Enciso-Baños

[CF03] Coelho, J., Florido, M.: Type-based XML Processing in Logic Program-

ming. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp.

273–285. Springer, Heidelberg (2002)

[CF04] Coelho, J., Florido, M.: CLP(Flex): Constraint logic programming ap-

plied to XML processing. In: Meersman, R., Tari, Z. (eds.) OTM 2004.

LNCS, vol. 3291, pp. 1098–1112. Springer, Heidelberg (2004)

[CF07] Coelho, J., Florido, M.: XCentric: logic programming for XML processing.

In: WIDM 2007: Proceedings of the 9th annual ACM international work-

shop on Web information and data management, pp. 1–8. ACM Press,

New York (2007)

[CH01] Cabeza, D., Hermenegildo, M.: Distributed WWW Programming using

(Ciao-)Prolog and the PiLLoW Library. Theory and Practice of Logic

Programming 1(3), 251–282 (2001)

[Cha02] Chamberlin, D.: XQuery: An XML Query Language. IBM Systems Jour-

nal 41(4), 597–615 (2002)

[HP03] Hosoya, H., Pierce, B.C.: XDuce: A Statically Typed XML Process-

ing Language. ACM Transactions on Internet Technology 3(2), 117–148

(2003)

[May04] May, W.: XPath-Logic and XPathLog: A Logic-Programming Style XML

Data Manipulation Language. Theory and Practice of Logic Program-

ming 4(3), 239–287 (2004)

[MS03] Marian, A., Simeon, J.: Projecting XML Documents. In: Proc. of In-

ternational Conference on Very Large Databases, Burlington, USA, pp.

213–224. Morgan Kaufmann, San Francisco (2003)

[OOP+04] O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: Ord-

Paths: Insert-friendly XML Node Labels. In: Proc. of the ACM SIGMOD

Conference, pp. 903–908. ACM Press, New York (2004)

[SB02] Schaffert, S., Bry, F.: A Gentle Introduction to Xcerpt, a Rule-based

Query and Transformation Language for XML. In: Proc. of International

Workshop on Rule Markup Languages for Business Rules on the Seman-

tic Web, Aachen, Germany, CEUR Workshop Proceedings 60, 22 pages

(2002)

[Sei02] Seipel, D.: Processing XML-Documents in Prolog. In: Procs. of the Work-

shop on Logic Programming, 15 pages, Dresden, Germany, Technische

Universität Dresden (2002)

[Thi02] Thiemann, P.: A typed representation for HTML and XML documents

in Haskell. Journal of Functional Programming 12(4&5), 435–468 (2002)

[TVB+02] Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram, J., Shekita,

E., Zhang, C.: Storing and Querying Ordered XML using a Relational

Database System. In: Proc. of the ACM SIGMOD Conference, pp. 204–

215. ACM Press, New York (2002)

[W3C07a] W3C. XML Path Language (XPath) 2.0. Technical report (2007),

http://www.w3.org/TR/xpath

[W3C07b] W3C. XML Query Working Group and XSL Working Group, XQuery

1.0: An XML Query Language. Technical report (2007),

http://www.w3.org

http://www.w3.org/TR/xpath
http://www.w3.org

Integrating XQuery and Logic Programming 135

[Wad02] Wadler, P.: XQuery: A Typed Functional Language for Querying XML.

In: Jeuring, J., Jones, S.L.P. (eds.) AFP 2002. LNCS, vol. 2638, pp. 188–

212. Springer, Heidelberg (2003)

[Wie05] Wielemaker, J.: SWI-Prolog SGML/XML Parser, Version 2.0.5. Techni-

cal report, Human Computer-Studies (HCS), University of Amsterdam

(March 2005)

[Wol04] Wolz, R.: Web Ontology Reasoning with Logic Databases. PhD thesis,

Universität Fridericiana zu Karlsruhe (2004)

[WR99] Wallace, M., Runciman, C.: Haskell and XML: Generic combinators or

type-based translation? In: Proceedings of the International Conference

on Functional Programming, pp. 148–159. ACM Press, New York (1999)

[WSW03] Wielemaker, J., Schreiber, G., Wielinga, B.J.: Prolog-Based Infrastruc-

ture for RDF: Scalability and Performance. In: Fensel, D., Sycara, K.P.,

Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 644–658. Springer,

Heidelberg (2003)

	Integrating XQuery and Logic Programming
	Introduction
	Translating XML Documents into Logic Programming
	Translating XPath into Logic Programming
	Translating XQuery into Logic Programming
	Formalizing the Transformation

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

